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Preface

It was Petra Mutzel who introduced me in ���� to the beautiful �eld of Automatic Graph
Drawing	 By that time she was working on the maximum planar subgraph problem and
her enthusiasm easily dragged me into this �eld	 She showed me that graph drawing is
more than simply assigning x and y coordinates to the vertices of a graph	 It is a �eld full
of nice and very challenging problems� most of them being very dicult as well	 When I
was working with Petra Mutzel on the maximal planar subgraph problem� I learned about
the PQ�tree data structure	

PQ�trees kept accompanying my work� when I joined Prof	 Dr	 Michael J�unger�s group
in November ����	 He encouraged me to implement this data structure as a reusable and
object oriented software framework� when I was working with Peter St�ormer on software
for �nding violated comb inequalities for solving TSP�instances by branch and cut	 This
reusable software package made all subsequent implementations a lot easier� especially
when I started working on the level planarity testing and embedding problem	

I am very grateful to Michael J�unger for supporting my work in many aspects	 He provided
me with the opportunity to take part in conferences� especially the annual Graph Drawing
Conferences that have been very important for me� and he introduced me to many people
working in the �eld of Automatic Graph Drawing	 Michael J�unger and Petra Mutzel always
took their time to discuss the problems that I encountered in my work� and its due to these
discussions that I kept on pursuing for a linear time level planarity test� once I found out
how to solve the problem in linear logarithmic time	

I am very grateful to my colleagues Volker Kaibel� Max B�ohm� Stefan Thienel� Joachim
Kupke� and Martin Wol�	 Discussion with Volker used to be very interesting� especially in
the later period of my work	 He also did careful proofreading of large parts of the thesis	
Max took his time to check Chapter � and Martin did the proofreading of Chapter �	 It was
Stefan�s idea to implement a tool for visualizing branch and cut trees for his ABACUS
framework	 I implemented the Tree Interface for him� when I was a master student and
extended it to a debugging tool	 The tool became very valuable for me during the im�
plementation of the PQ�tree algorithms	 The Tree Interface itself was based Joachim�s
Graphical Front End and his support during the implementation of the Tree Interface was
very valuable	 Besides� Joachim always had an answer whenever I had an �unsolvable�
problem with Linux� and thanks to his advise I �nally got my printer working	
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vi Preface

Of course� Linux was not the only source of problems� and it was Thomas Lange who
kept the number of problems very small and provided us with an excellent Unix system	 I
want to thank Elias Dahlhaus for checking some of my proofs� and Martin Diehl for a lot
fruitful discussions on C�� implementation details	 I also want to thank Claudia R�otters
and Judith Steinmann for providing me with any kind of literature� Michael Belling for his
assistance from the library� and our secretary Ursula Neugebauer	 I owe many thanks to
Christoph Buchheim� Marcus Oswald� and G�rril Vollen for testing earlier versions of my
PQ�tree implementation	

There have been several other colleagues who supported my work and whom I want to
thank� Carsten Gutwenger for his great support on the AGD�Library� Goos Kant for dis�
cussions on the maximal planar subgraph problem� Guiseppe Di Battista for discussions
on level planarity testing� Hermann Stamm�Wilbrandt for providing his code to generate
maximum planar graphs� Manfred Padberg for his advise while he was visiting our group
in autumn ����� Gerhard Reinelt for giving me the opportunity to present my results to
a broader audience� Ulrik Brandes for pointing out some interesting papers� Michael Seel
for his support when adding my PQ�tree implementation as LEDA�Extension Package to
LEDA� and David Alberts� Ralf Brockenauer� Matthias Elf� Gunnar Klau� Stefan N�aher�
Ren�e Weiskircher� and Thomas Ziegler for their great cooperation within the DFG�Project
�Design� Analysis� Implementation� and Evaluation of Graph Drawing Algorithms�	

Finally this work would not have been possible without the encouragement� love� and
support of my wife Anja� and my parents Neeltje and Klaus�Peter Leipert	

K�oln� October ���� Sebastian Leipert
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Chapter �

Introduction

Automatic Graph Drawing was probably born in the early sixties when computer scien�
tists in desperate need of understanding software started visualizing their code in diagrams
using graph drawing	 A graph is an abstract structure that can be used to represent infor�
mation that can be modeled as objects and relations between those objects	 The objects
are represented by the vertices and the relations by the edges of the graph	 The computer
scientists soon �gured out that drawing a graph with more than ten objects by hand is
either incredibly dicult or simply not possible	 Unfortunately� almost every graph that
they wanted to visualize did have a lot more than ten vertices	 Therefore� they started
thinking about algorithms for drawing graphs for visualization purposes� not being aware
of the fact that this way they founded a new area of scienti�c research� an area full of very
dicult problems and overwhelming results	

The reason why Automatic Graph Drawing becomes more and more popular is in fact its
broad application in di�erent areas	 Chemists need to draw large molecules� and biologists
need to draw evolutionary trees	 Databases are designed using entity�relationship diagrams�
and decision support systems for project management need to visualize PERT�Networks
and activity trees	 Software engineers want data �ow diagrams� subroutine�call graphs and
object�oriented class hierarchies to be visualized	

Designers of graph drawing algorithms as well as the readers of the diagrams want certain
aesthetics optimized such that the resulting graph drawings help the reader to understand
and remember the information embodied in the graph	 Examples of these aesthetics in�
clude minimizing the number of edge crossings� minimizing the number of edge bends�
minimizing the display area of the graph� visualizing a common direction ��ow� in the
graph� maximizing the angular resolution at the vertices� and maximizing the display of
symmetries	 Certainly� two aesthetic criteria cannot be simultaneously optimized in general
and it depends on the data which criterion should be preferably optimized	

A fundamental issue in Automatic Graph Drawing is to display hierarchical network struc�
tures as they appear in software engineering� project management or database design	 The
network is transformed into a directed acyclic graph G � �V�E� that has to be drawn with
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straight line edges that are either all directed upwards or all directed downwards	 Most
applications imply a partition V � � V � � � � � � V k of the vertices V into k levels that have
to be visualized by placing the vertices belonging to the same level V i on a horizontal line	
These graphs are called level graphs	 An example of a level graph is shown in Fig	 �	�	 It
has been produced using the visualization tool VCG Tool by Lemke and Sander �������
displaying a compiler graph	

A criterion to obtain good readability in the presentation of level graphs is to produce dia�
grams with a limited number of crossings between the edges	 However� the k�level crossing
minimization problem that asks for minimizing the number of crossings in a drawing of
a k�level graph has shown to be NP�hard by Garey and Johnson ������� even if k � 
	
According to Eades� McKay� and Wormald ������� the problem remains NP�hard if the
vertices of one of the two levels are �xed in their position	

Due to the NP�hardness of the problems a lot of e�ort has been spent to the design of
ecient heuristics for reducing the number of crossings in drawings of 
�level graphs	 The
main idea was to use a �good� heuristic for the 
�level case and to perform a �level by
level sweep� on the general k�level case� trying to reduce the crossings between consecutive
levels	 Choosing an appropriate ordering of the �rst level� the ordering of every level i is
kept �x while reordering the level i�� in order to reduce the crossings between level i and
i� �	 The process can be repeated in reverse direction to reduce the crossings further	

The compiler graph in Fig	 �	� has been produced using the barycentric heuristic	 This
heuristic is the most commonly used one and has been presented by Sugiyama� Tagawa�
and Toda ������	 Given a 
�level graph with one level �xed� the barycentric method orders
the vertices of the free level according to the barycenter �average� of the x�coordinates of
their neighbors in the �xed level	

Figure �	
 shows the upper left part of the drawing of the compiler graph	 It reveals one
of the problems that come along with the approach of performing a level by level sweep in
order to minimize the number of crossings	 The �gure shows that there is an edge crossing
of two edges connecting vertices on the third and the fourth level	 It is easy to see that this
crossing can be avoided by simply placing both the fourth vertex on level 
 and and the
fourth vertex on level � to the left side of the �rst vertex on level 
 and level �� respectively�
and by placing the third vertex on level � between the �rst and the second vertex	 The
�origin� for this edge crossing is located in the �rst two levels	 Based on a �xed order of
the vertices of the �rst level� the barycentric method has chosen an order for the vertices
of the second level� such that no crossings occur between the two levels	 Since every vertex
on level 
 has at most one outgoing edge this determines the ordering of the vertices on the
third level	 When the heuristic �nally computes the positions of the vertices of the fourth
level� it cannot avoid the edge crossing	

The problem that appears here is not speci�c to the barycentric heuristic	 All algorithms
based on a �level by level sweep� can produce unnecessary crossings like the one in the
example above	 This is due to the very local view of these algorithms	 More general ap�
proaches that try to obtain a global view during the minimization of edge crossings are not
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practical yet and demand deeper studies	 A �rst approach has been reported by J�unger�
Lee� Mutzel� and Odenthal �����a� along with preliminary computational results for 
�
and ��level graphs	

Figure �	�� Example of a level graph	

However� if a level graph can be drawn without any edge crossings� we would like to detect
this fact and construct a corresponding drawing	 Level graphs that admit such a drawing
are called level planar	 A �rst approach for testing level planarity has been presented by
Di Battista and Nardelli ������ for the special case of hierarchies	 A hierarchy is a level
graph such that all sources belong to the same level of the graph	 To perform their test�
Di Battista and Nardelli ������ use the PQ�tree data structure which will play a central
role in this work� too	
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Figure �	
� Upper leftmost part of the graph shown in Fig	�	�	

A PQ�tree is a powerful data structure that represents those permutations of a �nite set in
which the members of speci�ed subsets occur consecutively	 This data structure has been
introduced by Booth and Lueker ������ to solve the problem of testing for the consecutive
ones property in matrices� i	e	� determine if the rows of a ��� ���matrix can be permuted
such that in each column all of the ones are consecutive	 The most well�known applications
of PQ�trees are in Automatic Graph Drawing� i	e	� planarity testing �see Lempel� Even�
and Cederbaum ������� Booth and Lueker ������� and embedding of planar graphs �see
Chiba� Nishizeki� Abe� and Ozawa �������	

PQ�trees have also been proposed by Heath and Pemmaraju ������ ����� to test level
planarity of level graphs with several sources and sinks where the sources and sinks may
appear on arbitrary levels	 However� in Section �	�	
 we show that their application of
PQ�trees leads to an incorrect algorithm	 Since this algorithm was the only attempt to
prove polynomial time complexity in the literature� the complexity status of level planarity
testing was open after we had detected the incorrectness of the algorithm of Heath and
Pemmaraju	 In Chapter � we describe one of the main contributions of this thesis� a level
planarity test of the general level planarity problem with linear running time	

In order to draw a level planar graph without edge crossings� a level planar embedding
of the level graph has to be computed	 For this we need to determine an ordering of the
vertices that admits such a level planar drawing	 In Chapter � we present a linear time
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algorithm for embedding level planar graphs	 This approach is based on the level planarity
test and augments a level planar graph G to an st�graph Gst� a graph with a single sink
and a single source� without destroying the level planarity	 Once the st�graph has been
constructed� we compute a planar embedding of the st�graph	 This is done by applying
the embedding algorithm of Chiba et al� ������ for general graphs� obeying the topological
ordering of the vertices in the st�graph	 Exploiting the embedding of the st�graph Gst� we
are able to determine a level planar embedding of G	

This thesis starts by describing some of the basic concepts of graph theory in Chapter 
	
Besides �xing the necessary notations we give a short introduction to the theory of planar
graphs	 More enhanced graph models like cluster graphs and level graphs are described in
Sections 
	� and 
	�	

Chapter � introduces the PQ�tree data structure and some of its applications like� e	g	�
the planarity test of Booth and Lueker ������ and the embedding algorithm of Chiba�
Nishizeki� Abe� and Ozawa ������	 We introduce the data structure PQ�tree and the so
called template matching algorithm that constructs a PQ�tree that represents the permu�
tations of a �nite set in which the members of speci�ed subsets occur consecutively	 After
reviewing the planarity test of Lempel� Even� and Cederbaum ������ and its modi�cations
using PQ�trees in Section �	
� we examine in Section �	� the embedding algorithm of Chiba
et al� ������	 The study of these algorithms is important for this work on testing for level
planarity	 The embedding of cluster graphs by Feng� Cohen� and Eades ������ is studied in
Section �	�� since it is a successful adaption of the planarity testing and embedding strate�
gies of Booth and Lueker ������ and Chiba et al� ������	 The chapter closes by reviewing
the computation of maximal planar subgraphs as another unsuccessful approach of apply�
ing PQ�trees in the �eld of Automatic Graph Drawing in Section �	�	 Several attempts
have been tried to solve the problem with the help of PQ�trees	 The latest approaches
have been reported by Jayakumar� Thulasiraman� and Swamy ������ and Kant ����
�	
We show that the algorithm presented by Jayakumar et al� ������ is not correct	 It does
not necessarily compute a maximal planar subgraph� and the same holds for a modi�ed
version of the algorithm presented by Kant ����
�	 Our conclusions suggest not to use PQ�
trees for this speci�c problem	 As an �intended� side�e�ect� Section �	� should be useful
for preparing the �rst part of the next chapter� were we review the erroneous approach of
Heath and Pemmaraju ������ ����� for testing level planarity of level graphs	

The subject of Chapter � is to examine existing �incorrect� level planarity tests and to
develop the �rst �linear time� level planarity test	 After a short introduction to the the�
oretical background� were we review characterizations of Di Battista and Nardelli ������
and Healy and Kuusik ������ of level planarity in terms of forbidden subgraphs� we review
the level planarity test of Di Battista and Nardelli ������	 In order to check whether a
level graph G � �V�E� is level planar� it is sucient to �nd an ordering �j of the vertices
of every level V j such that for every pair of edges �u�� v��� �u�� v�� � E with u�� u� � V i�
v�� v� � V i�� and u� �i u�� we have v� �i�� v�	 Let G

j denote the subgraph of G induced
by V � � V � � � � � �V j	 The strategy of Di Battista and Nardelli ������ for testing the level
planarity of hierarchies is to perform a top�down sweep� processing the levels in the order
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V �� V �� � � � � V k and computing for every level V j the set of permutations of the vertices of
V j that appear in some level planar embedding of Gj	 Obviously� the graph G � Gk is level
planar� if and only if the set of permutations for Gk is not empty	 This level planarity test
implies that the set of level planar embeddings of a hierarchy can be represented by a PQ�
tree	 Section �	� presents the approach of Heath and Pemmaraju ������ ����� for general
level graphs including our proof of the incorrectness of the algorithm in Section �	�	
	 As in
the approach of Di Battista and Nardelli ������ for hierarchies the basic idea is to perform
a top�down sweep	 Since a graph Gj is not necessarily connected� separate PQ�trees are
introduced for every component of Gj� and standard PQ�tree techniques are applied as
long as di�erent components of Gj are not adjacent to a common vertex on level j � �	 If
two components are adjacent to a common vertex v on level j ��� they have to be merged
somehow and a new PQ�tree has to be constructed from the two corresponding PQ�trees	
The new PQ�tree then represents all level planar embeddings of the merged component	
Applying a combination of �reduce� operations and �merge� operations for combining PQ�
trees� Heath and Pemmaraju try to maintain for every level V j and for every component
F of that level the set of permutations of the vertices of F in V j that appear in some
level planar embedding of Gj	 If the set of permutations for Gk is not empty� the graph
G � Gk is obviously level planar	 However� the opposite is in general not true for the set
of permutations Heath and Pemmaraju end up with	 In Sections �	� and �	� we present
a correct level planarity testing algorithm that is based on two main new techniques that
replace the incorrect crucial parts of the algorithm of Heath and Pemmaraju ������ �����	
After having proved the correctness in �	�� we show that this approach yields an O�n logn�
time level planarity test	 In Section �	� we devise strategies that achieve linear running
time	 For simplicity� we assume in Chapter � that all level graphs are proper� having only
edges connecting vertices belonging to consecutive levels	 In the �nal section of this chapter
we show that our algorithm performs on nonproper graphs with no modi�cation yielding
a linear time algorithm for nonproper graphs as well	

Chapter � describes a level planar embedding algorithm that is based on our level planarity
test	 In order to compute a level planar embedding of a level planar graph G � �V�E� the
graph G is augmented to a planar st�graph Gst � �Vst� Est� with Vst � V � fs� tg and
E � Est	 An st�graph is a directed acyclic graph with a single source s� a single sink t� and
an edge �s� t�	 The graph Gst is planar embedded with the edge �s� t� on the boundary of
the outer face using the algorithm of Chiba et al� ������	 The level planar embedding is
then constructed from the planar embedding	 After having proved in Section �	� that every
level graph is level planar if and only if it is a subgraph of a planar st�graph� we show how
to obtain a level planar embedding of G from the planar embedding of Gst	 Section �	

considers the augmentation of a level graph G to an st�graph Gst	 This augmentation step
is divided into two phases	 In the �rst phase an outgoing edge is added to every sink of
G	 Using the same algorithmic concept as in the �rst phase� an incoming edge is added to
every source of G in the second phase	 We �nish Chapter � with proofs on the correctness
and the linear running time of the level planar embedding algorithm	
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While working on the theoretical subjects we have implemented an object oriented pro�
totype of our level planarity testing and embedding algorithm using the C�� language	
Chapter � reviews the concepts of the implementation including our implementation of the
PQ�tree data structure as a class template in C��� and pays attention to some details	
We refrained from including the complete software and concentrated on a few details of
the implementation	 The last three sections of Chapter � contain such details	

The discussions of Chapter � are intended to summarize the results of this work and to
suggest directions of further investigations	
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Chapter �

Basic Concepts in Graph Theory

This chapter introduces basic concepts in graph theory and its intention is mainly to provide
some notational conventions	 The �rst section gives some general notation for �undirected�
graphs that is also valid for more enhanced models as directed or clustered graphs� and
level graphs	 The second section deals with directed graphs	 Since the notions of graph
planarity and graph embedding are important for this work� two individual sections are
devoted to these subjects	 Finally� clustered graphs and level graphs are treated in the last
two sections	 The notations of the �rst four sections is mainly motivated by Harary �������
Cormen� Leiserson� and Rivest ������� Chiba and Nishizeki ������� and Di Battista� Eades�
Tamassia� and Tollis ������	 The notation of the last two sections is based on recent papers	

��� Graphs

A graph G is a pair �V�E�� where V is a �nite set of vertices and E is a �nite set of edges�
where each edge e � E consists of an unordered pair of distinct vertices u� v � V 	 The set
V is called the vertex set of G and E is called the edge set of G	 Vertices of a graph are
denoted throughout this work by small letters such as u� v� w� x� y� or z	

Let e � E be an edge and u � V be one of its vertices� then e and u are called incident 	 If
e � E is an edge with incident vertices u� v � V � the edge e connects the vertices u and v�
and we say that u and v are adjacent 	 Two edges e�� e� � E that are incident to the same
vertex v � V are called adjacent 	

If e � E is an edge incident to vertices u� v � V � we will use the notation e � �u� v�	
This notation is not unique in general	 However� multiple edges are not relevant to the
problems discussed in this work	 We therefore restrict our studies to simple graphs� having
no multiple edges	 The notation e � �u� v� is unique for simple graphs	

The degree of a vertex v is the number of its incident edges	 A vertex v is called isolated if
no edge is incident to v	 Throughout this work let n � jV j denote the number of vertices
and m � jEj denote the number of edges of a graph	

�
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A graph G� � �V �� E �� is said to be a subgraph of G � �V�E� or contained in G if V � � V
and E � � E	 If V � � V � G� is called a spanning subgraph of G	 If E � contains exactly those
edges of G that connect two vertices in V � then G� is said to be induced by V �	 If G� is a
subgraph of G� then G	G� � �V�E	E �� denotes the di�erence of G and G�	 Thus G	G�

is a subgraph of G induced by removing all edges that are in G�	 If V � � V � then G	 V �

is the subgraph of G induced by V 	 V �	 For a single vertex v � V � the graph G 	 fvg
denotes the subgraph of G induced by V 	 fvg	

A walk W in a graph G is an alternating sequence of vertices and edges
v�� e�� v�� e�� v�� � � � � ek� vk� beginning and ending with vertices v� and vk and ei � �vi��� vi�
for i � �� 
� � � � � k	 This walk connects v� and vk and may also be denoted by W �
�v�� v�� � � � � vk�� with the edges being evident by context	 A walk W is called a path if
all vertices are distinct	 The length of a path is the number of edges on the path	 A walk
is called a cycle if all vertices are distinct except for v� � vk and k 
 �	 A graph that does
not have any cycles as subgraphs is called a forest 	

A graph G is connected if every pair of vertices is connected by a path	 A component
of G is a maximal connected subgraph of G	 Thus a disconnected graph has at least two
components	 A cut vertex is a vertex� whose removal increments the number of components	
Thus if G is connected� at least one vertex has to be removed from G in order to disconnect
it	 If no such cut vertex in G exists� G is called biconnected 	 A pair of vertices u� v � V is
called a split pair if its removal disconnects the graph	 The components that remain after
the removal of a split pair u� v are called split components with respect to the vertices u
and v	 If no split pair in G exists� G is called triconnected 	

A connected forest G is called a free tree	 The adjective �free� is generally omitted and we
say that a graph is a tree	 A subgraph G� of a tree G is a subtree if G� itself is a tree	 A
rooted tree is a free tree in which one of the vertices is distinguished from the others	 The
distinguished vertex is called the root of the tree	 We shall refer to a vertex of a rooted
tree as a node of the tree	 The term �node� is often used in the graph theory literature as
a synonym of a �vertex�	 We shall reserve the term �node� to mean a vertex of a rooted
tree	

Let Z be the root of a rooted tree T and let X be a node in T 	 Any node Y on the
unique path from Z to X is called an ancestor of X	 If Y is an ancestor of X� then X is a
descendant of Y 	 If Y is an ancestor of X and X �� Y � then Y is a proper ancestor of X
and X is a proper descendant of Y 	 If Y is a proper ancestor of X and �Y�X� is an edge
in T � then Y is called parent of X and X is a child of Y 	 The subtree rooted at X is the
tree induced by the descendants of X� rooted at X	 The length of the path from the root
to a node X is the depth of X	 The largest depth of any node in T is the height of T 	

In a rooted tree� every node has exactly one parent except for the root	 If two nodes have
the same parent� they are siblings	 A node with no children is an external node or a leaf 	
A node that is not a leaf is called an internal node	 Throughout this work we make use of
capitalized letters such as X� Y � and Z to denote nodes of a tree	
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An ordered tree is a rooted tree in which the children of each node are ordered	 Two ordered
trees T� and T� are equal if their underlying rooted trees are equal and the children of every
internal node X of T� appear in the same order as the children of X in T�	 Two nodes X�
Y of an ordered tree are called adjacent if they are siblings and appear consecutively in
the order of children of their parent	

A graph G� is said to be a subdivision of a graph G� if G� is obtained from G by replac�
ing every edge e � �v� w� � E by a path p � �v � u�� u�� � � � � u� � w�� � 
 �� and
u�� u�� � � � � u��� �� V 	 Two graphs G and G� are said to be isomorphic if there exists a
one to one correspondence of the vertices that induces a one to one correspondence of the
edges	 Usually� graphs that are isomorphic are identi�ed	

A graph G � �V�E� is said to be complete if every vertex v � V is adjacent to every vertex
w � V 	 fvg	 A complete graph with n vertices is denoted by Kn	 Figure 
	��a� and �b�
show the complete graphs K� and K�	 A bipartite graph G is a graph whose vertex set V
can be partitioned into two subsets V� and V� such that every edge connects a vertex in V�
and a vertex in V�	 If every vertex in V� is adjacent to every vertex in V�� G is a complete
bipartite graph	 If jV�j � n� and jV�j � n�� the complete bipartite graph is denoted by
Kn��n� 	 Figure 
	��c� shows the complete bipartite graph K���	

�a� K� �b� K� �c� K���

Figure 
	�� Some examples of graphs	

An operation that is used very often throughout this work is the identi�cation of vertices	
Two vertices u and v of a graph G are identi�ed by introducing a new vertex w� inserting
for every edge ��u� u� and ��v� v� an edge ��u� w� and ��v� w�� respectively� removing u and v
and all edges incident on u and v	

��� Directed Graphs

A directed graph or digraph G is a pair �V�E�� where V is a �nite set of vertices and E is
a �nite set of edges� where each edge e � E consists of an ordered pair of vertices u� v � V 	
Ignoring for every edge the order of its vertices� we get an undirected graph that is called
the underlying graph of G	 If e � �u� v� is an edge in G� we say that e leaves vertex u and
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enters vertex v	 The vertex u is the tail of e and the vertex v is the head of e� with e being
the outgoing edge of u and the incoming edge of v	 For an edge e � �u� v� we say that u
dominates v	 A source is a vertex with no incoming edges and a sink is a vertex with no
outgoing edges	

A directed graph G� � �V �� E �� is said to be a subgraph of a directed graph G � �V�E�
if V � � V and E � � E	 If V � � V � G� is called a spanning subgraph of G	 A directed
walk W in a digraph G is a walk W � �v�� v�� � � � � vk� in the underlying graph of G with
ei � �vi��� vi� � E� for i � �� 
� � � � � k	 An undirected walk W in a digraph G is a walk
in the underlying graph such that either ei � �vi��� vi� � E or ei � �vi� vi��� � E� for
i � �� 
� � � � � k	 A directed or undirected walk W is called a directed or undirected path if all
vertices are distinct	 A directed walk is called a cycle if all vertices are distinct except for
v� � vk	 A digraph that does not have any cycles is called acyclic	 A digraph is connected
or biconnected if its underlying graph is connected or biconnected� respectively	

An acyclic digraph with exactly one source is called a single source graph	 Consequently�
an acyclic digraph with exactly one sink is called a single sink graph	 A directed acyclic
graph with exactly one source s and exactly one sink t and an edge �s� t� is called an
st�graph	

A topological numbering of G is an assignment of numbers to the vertices of G such that
for every edge �u� v� of G the number assigned to v is greater than the one assigned to u
�i	e	� number�v� � number�u��	 A topological sorting of G is a topological numbering of G
such that every vertex is assigned a distinct integer between � and n	 It is easy to see that
G admits a topological numbering or sorting if and only if G is acyclic	

��� Embedded Graphs

A graph G � �V�E� is generally visualized by a drawing in the plane with the vertices
drawn as points and the edges drawn as closed Jordan curves� connecting their incident
vertices	 An intersection of two edges in a drawing is called a crossing 	

An embedding E of G consists of the clockwise orderings of the incident edges for every
vertex with respect to a drawing	 Usually� a graph G � �V�E� is represented as a collection
of adjacency lists	 For each vertex v � V � the adjacency list adj �v� is an ordering of all
vertices u � V that are adjacent to v	

Let E be an embedding of an undirected graph G � �V�E� and let e � �v� w� � E be
an edge in G	 Then the vertex v appears in the adjacency list adj�w� and the vertex w
appears in the list adj �v�	 The adjacency lists are said to mirror an embedding E of G� if
the neighbors of a vertex v appear in adj �v� in the same order as in E 	

An upward drawing of a directed acyclic graph G is a drawing of G such that each edge
is drawn as a curve monotonically increasing in vertical direction	 An upward embedding
U is a representation of G that consists of the clockwise orderings of the incoming edges
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for every vertex with respect to an upward drawing	 Usually� any drawing of a directed
acyclic graph G is called upward if the edges follow a common direction	 Thus if all edges
are drawn as curves monotonically decreasing in vertical direction� we call this an upward
drawing by convention	

Directed graphs are represented in adjacency lists as well	 For the special case of upward
embeddings of directed acyclic graphs� one more convention for the representation in adja�
cency lists is made	 Let U be an upward embedding of a directed acyclic graph G � �V�E�
and let e � �v� w� � E be an edge in G	 Then the tail v of the edge e appears in the
adjacency list adj �w� while the head w does not appear in the adjacency list adj �v�	

��� Planar Graphs

A graph G � �V�E� is called planar if it can be drawn in the plane such that no two edges
cross each other except at common endpoints	 A planar embedding of a planar graph G is an
embedding with respect to a planar drawing	 A graph with a given �xed planar embedding
is also called a plane graph	 Given any drawing with respect to a planar embedding of a
graph G� a face of G is any topologically connected region in the drawing surrounded by
the edges of G	 A face of a plane graph is uniquely described by its surrounding edges	 The
one unbounded face of a plane graph is called the outer face or exterior face	 All other faces
are called interior faces	 By a stereographic projection� every face of a planar embedding
can be made the outer face	 The boundary of a face F is the set of edges in the closure of
the face	 Thus the boundary is a walk in general and is a cycle if G is a biconnected graph
with at least three vertices	

In general� a planar graph has many planar embeddings in the plane� and two embed�
dings are said to be equivalent if the boundary of a face in one planar embedding always
corresponds to the boundary of a face in the other planar embedding	 If G is a discon�
nected plane graph� a new nonequivalent embedding can be obtained simply by replacing
a connected component within another face	 A plane embedding of a graph is said to be
unique if the planar embeddings are all equivalent	 Whitney ������ proved that the planar
embedding of a triconnected graph is unique	

There is a simple formula relating the number of vertices� edges and faces in a connected
plane graph discovered by Euler	

Theorem ��� Euler ��	��� Let G � �V�E� be a planar� connected graph with n � jV j
and m � jEj� Let f be the number of faces in a planar embedding of G� Then n� m and f
are related by

n	m� f � 
 �

An important corollary of Euler�s formula that will be needed throughout this work is the
following	
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Corollary ���� A planar graph G � �V�E� satis�es m � �n 	 �� If G is bipartite� then
the inequality can be strengthened to m � 
n	 ��

Corollary 
	
 immediately yields the nonplanarity of the graphs K� and K���� shown in Fig	

	�	 It follows that every graph that contains a subdivision of K� and K��� as subgraph
is not planar	 Surprisingly� the converse is also true as has been shown by Kuratowski
������	 The result yields a �rst and very nice characterization of planar graphs in terms of
forbidden subgraphs	

Theorem ��� Kuratowski ������� A graph is planar if and only if it does not contain
a subdivision of K� and K����

A directed acyclic graph G � �V�E� is called upward planar if it has an upward drawing
that is planar with respect to the underlying graph	 An upward planar embedding is an
upward embedding with respect to an upward planar drawing	 The following theorem gives
a simple characterization of upward planarity	

Theorem ��� Kelly ������Di Battista and Tamassia ������� Let G be a di�
rected acyclic graph� Then G is upward planar if and only if G is a spanning subgraph
of a planar st�graph�

We need the result of this theorem later in Chapter � when �nding a simple characterization
of the special class of level planar graphs	 Planar st�graphs were introduced in conjunction
with an early planarity testing algorithm by Lempel� Even� and Cederbaum ������ and their
properties are further explored in Rosenstiehl and Tarjan ������� Tamassia and Preparata
������� and Tamassia and Tollis ������	 As described in Chapter �� planarity of a graph
can be tested in O�n� time by the approach of Lempel et al� ������ using the special
data structure PQ�tree	 Despite of its simple characterization� upward planarity testing of
directed acyclic graphs is NP�complete as has been shown by Garg and Tamassia ������	
Only directed acyclic graphs having a single source can be tested for upward planarity	
Hutton and Lubiw ������ presented an upward planarity test for this class of graphs using
O�n�� time	 This upward planarity test was later improved by Bertolazzi� Di Battista�
Mannino� and Tamassia ������ to a linear running time algorithm using a special data
structure called SPQR�tree	

��� Cluster Graphs

Cluster graphs are graphs with recursive clustering structures over the vertices	 A cluster
graph C � �G� T � consists of an undirected graph G and a rooted tree T such that the
leaves of T are exactly the vertices of G	 Each node � of T represents a cluster V ��� of the
vertices of G that are leaves of the subtree rooted at �	 The tree T describes an inclusion
relation between clusters	 The tree T is called the inclusion tree of C	 The graph G is
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called the underlying graph of C	 The tree T ��� represents the subtree of T rooted at the
node �� and G��� denotes the subgraph of G induced by the cluster associated with node
�	 We de�ne C��� � �G���� T ���� to be the subcluster graph associated with node �	 An
edge �v� w� with v being a vertex in G��� and w being a vertex in G	 G��� is said to be
incident to cluster �	

In a drawing of a cluster graph C � �G� T �� the graph G is drawn as points and curves as
usual	 For each node � of T � the cluster is drawn as simple closed region R �i	e	� a region
without holes� that contains the drawing of G���� such that the following three conditions
hold	

�i� The regions for all subclusters of � are completely contained in the interior of R	

�ii� The regions for all other clusters are completely contained in the exterior of R	

�iii� If there is an edge e between two vertices of V ��� then the drawing of e is completely
contained in R	

A cluster graph C � �G� T � is a connected cluster graph if each cluster induces a connected
subgraph of G	 Let C� � �G�� T�� and C� � �G�� T�� be two cluster graphs� such that T� is
a subtree of T� and for each node � of T�� G���� is a subgraph of G����	 Then C� is said
to be a subcluster graph of C�	

Figure 
	
� A cluster graph that is not c�planar	

The drawing of an edge e and a region R have an edge�region crossing if the drawing of
e crosses the boundary more than once	 A drawing of a cluster graph is c�planar if there
are no edge crossings or edge�region crossings	 A graph having a c�planar drawing is called
c�planar 	 Notice that the planarity of the underlying graph does not imply the existence
of a c�planar drawing of a cluster graph	 Figure 
	
 taken from Feng� Cohen� and Eades
������ shows a cluster graph whose underlying graph is planar	 However� the cluster graph
is not c�planar	 This can be easily observed since the underlying graph is triconnected	 The
�gure shows a drawing with two edge�region crossings	
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��� Level Graphs

Let G � �V�E� be a directed acyclic graph	 A leveling of G is a topological numbering of
G lev � V � Z mapping the vertices of G to integers such that lev�v� 
 lev�u� � � for all
�u� v� � E	G is called a level graph if it has a leveling	 If lev�v� � j� then v is a level�j vertex 	
Let V j � lev���j� denote the set of level�j vertices	 Each V j is a level of G	 If G � �V�E�
has a leveling with k being the largest integer such that V k is not empty� G is said to be
a k�level graph	 For a k�level graph G� we sometimes write G � �V �� V �� � � � � V k�E�	

An drawing of G in the plane is a level drawing if the vertices of every V j� � � j � k� are
placed on a horizontal line lj � f�x� k 	 j� j x � Rg� and every edge �u� v� � E� u � V i�
v � V j� � � i � j � k� is drawn as a monotone decreasing curve between the lines li
and lj	 A level drawing of G is called level planar if no two edges cross except at common
endpoints	 A level graph is level planar if it has a level planar drawing	 A level graph G
obviously is level planar if and only if all its components are level planar	 A graph that is
not level planar is usually called nonlevel planar 	

A level drawing of G determines for every V j� � � j � k� a total order �j of the vertices
of V j� given by the left to right order of the vertices on lj	 A level embedding consists of
a permutation of vertices of V j for every j � f�� 
� � � � � kg with respect to a level drawing	
Thus a level embedding is not given by the clockwise order of edges incident to every
vertex� but by a permutation of the level�j vertices for each level j � f�� 
� � � � � kg	 A level
embedding with respect to a level planar drawing is called level planar 	
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�b� A hierarchy�

Figure 
	�� Examples of proper level graphs	 Sources are drawn black	

A level graph G � �V�E� is said to be proper if every edge e � E connects only vertices
belonging to consecutive levels	 Figure 
	� shows two proper level graphs	 If a level graph
is not proper� it must have an edge e � �v� w� � E such that v � V i and w � V j with
� � i � j	 � � k	 �	 Such an edge is called a long edge and it is said to be traversing the
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levels l with i � l � j	 Any nonproper level graph can be transformed into a proper level
graph by replacing every long edge by a path having a dummy vertex for every traversed
level	

A k�level graph G may have sinks and sources placed on various levels of the graph	 A
hierarchy is a level graph such that all sources belong to the �rst level V � of the graph	 If G
is a hierarchy having more than one vertex in V � it is always possible to add a new subset
V � with exactly one vertex connected to every vertex of V �	 Such a transformation does
not modify the planarity properties of the given hierarchy	 As a consequence� we consider
only hierarchies with jV �j � �	 Figure 
	��b� shows a hierarchy	
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PQ�trees and Applications

The PQ�tree data structure has been developed by Booth and Lueker ������ for solving
the problem of �nding permissible permutations of a set U 	 The permissible permutations
are those in which certain subsets S � U occur as consecutive subsequences	 A PQ�tree
represents a class of permissible permutations	 As the elements of each new subset S are
constrained to appear together� the number of permissible permutations is reduced	 The
corresponding PQ�tree operation is called reduction with respect to S	 Booth and Lueker
������ presented an ecient algorithm for computing the reduction of a PQ�tree� and
showed that its running time is linear in the size of the input	

Booth and Lueker ������ mentioned that typical applications for PQ�trees are the con�
secutive ones property in matrices and the recognition of interval graphs	 A ��� ���matrix
has the consecutive ones property if and only if its rows can be permuted such that in
each column all of the ones are consecutive �see Fulkerson and Gross �������	 A graph
G � �V�E� is an interval graph if and only if there is a one to one correspondence between
its vertices and a set of intervals on the real line such that two vertices are adjacent if and
only if the corresponding intervals have a nonempty intersection �see� e	g	� Fulkerson and
Gross �������	 Booth and Lueker ������ also noticed that the application of PQ�trees in
the planarity test of Lempel� Even� and Cederbaum ������ improves the eciency of the
original algorithm from quadratic to linear running time	 The application of PQ�trees in
the planarity test is probably the most well known one	 Other applications in the �eld of
Automatic Graph Drawing are for instance the computation of an embedding of a planar
graph by Chiba� Nishizeki� Abe� and Ozawa ������� and planarity testing and embedding
of clustered graphs by Feng� Cohen� and Eades ������	

This chapter introduces the data structure PQ�tree and the so called template matching
algorithm that reduces a PQ�tree with respect to a subset S � U 	 After reviewing the
planarity test of Lempel et al� ������ and its modi�cation using the PQ�trees� we examine
the embedding algorithm of Chiba et al� ������	 The study of these algorithms is important
for this work on testing for level planarity	 The embedding of clustered graphs by Feng et al�
������ is studied since it is a successful adaption of the planarity testing and embedding
strategies of Booth and Lueker ������ and Chiba et al� ������	

��




� Chapter �� PQ	trees and Applications

The chapter closes by reviewing the computation of maximal planar subgraphs as an un�
successful approach of applying PQ�trees in the �eld of Automatic Graph Drawing	 A
subgraph G� of a simple graph G � �V�E� is a maximal planar subgraph if for all edges
e � G 	 G� the addition of e to G� destroys planarity	 In ���� Ozawa and Takahashi
presented an algorithm for computing a maximal planar subgraph using PQ�trees	 This
algorithm was a modi�ed version of the planarity test of Booth and Lueker ������� and
has been proven to be incorrect by Jayakumar� Thulasiraman� and Swamy ������	 In ����
Jayakumar� Thulasiraman� and Swamy presented a new algorithm for computing a max�
imal planar subgraph� also using PQ�trees	 However� this algorithm was still not correct�
as has been shown by Kant ����
�� who suggested profound modi�cations of the approach
of Jayakumar et al� ������	 Leipert ������ showed that Kant�s approach fails as well	 Fi�
nally� J�unger� Leipert� and Mutzel �����a� discovered the existence of a substantial �aw in
the main strategy that has been used in the approaches of Ozawa and Takahashi �������
Jayakumar et al� ������� and Kant ����
�	 This �aw suggests not to use PQ�trees at all
for computing maximal planar subgraphs	 Most parts of the last section in this chapter
have been published by J�unger� Leipert� and Mutzel �����a�	 However� it is very useful
to examine the mistakes closely in preparation of the next chapter� were we review an
erroneous approach of Heath and Pemmaraju ������ ����� for testing level planarity of
level graphs	

PQ�trees have not only successfully been applied in Automatic Graph Drawing but also
in various other �elds such as physical mapping with end�probes in computational biology
�see Christof� J�unger� Kecegioglu� Mutzel� and Reinelt ������ and Christof ������� and
�nding violated comb inequalities when solving TSP instances by branch and cut �see
Applegate� Bixby� Chv atal� and Cook �������	

PQ�trees are rather dicult to implement� thus attempts have been made to simplify the
data structure� e	g	� Novick ������ introduces generalized PQ�trees including a processor
parallel algorithm for computing the generalized PQ�trees	 Meidanis and Munuera ������
and Meidanis� Porto� and Telles ������ give a simple extension of the PQ�tree called the
PQR�tree	 However� their reduction algorithms for computing the set of permissible per�
mutations need quadratic time� while the reduction algorithm of the original PQ�trees uses
only linear time in the size of the input	 The only simpli�cation that preserves the linear
time bound has been developed by Korte and M�ohring ������	 However� these simpli�ed
PQ�trees have been constructed to deal speci�cally only with the recognition of interval
graphs	

There are several algorithms restricted to special problems that do not use PQ�trees and
that perform also in linear time	 Hsu ����
� presented a linear time algorithm for testing
for the consecutive ones property	 Corneil� Kim� Natarajan� Olariu� and Sprague �������
and de Figueiredo� Meidanis� and Mello ������ showed how to solve various problems for
interval graph recognition in linear time	
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In this section� an introduction to the data structure PQ�tree is given	 The functionality
of the data structure is very important for the following chapters	 The PQ�tree and the
template matching algorithm are therefore introduced in detail	

Let U � fa�� a�� � � � � amg� m 
 �� denote some �nite set called the universal set 	 Let
S � fSi � U j i � �� 
� � � � � ng be a family of n 
 � subsets of U 	 Then all permutations of
the elements of U have to be found� where the elements of each subset Si� i � �� 
� � � � � n�
occur as a consecutive subsequence	 These permutations of U are called the permissible
permutations with respect to S and we refer to them in general as the permissible permu�
tations	 Let

 ! �� f	 j 	 is a permutation of Ug and

 !Si �� f	 � ! j all elements of Si are consecutive within 	g �

Computing the permissible permutations !S with respect to S will be performed by a
function REDUCTION that starts on ! as the permissible permutations and removes
successively for every Si� i � �� 
� � � � � n� those permutations� in which elements of Si are
separated by elements of U 	 Si	

!S REDUCTION�U�S� n�
begin

!S �� !�
for i � � to n do

!S �� !S � !Si �
return !S �

end	

The operation !S �� !S � !Si is called a reduction with respect to Si� and is performed by
a function REDUCE	 We now give the de�nition of a PQ�tree	

De�nition ���� The class of PQ�trees over a universal set U is de�ned to be all rooted�
ordered trees� whose leaves are elements of U and whose internal nodes are distinguished
as being either P �nodes or Q�nodes� A PQ�tree over U is said to be proper if

�i� every element ai � U appears precisely once as a leaf�

�ii� every P �node has at least two children� and

�iii� every Q�node has at least three children�

From now on� only proper PQ�trees are considered	 In illustrations� a P �node is drawn as
a circle� a Q�node is drawn as a rectangle� and a leaf ai � U is drawn as the element itself	
The PQ�tree shown Fig	 �	� is a tree over a set U � fA�B�C�D�E� F�G�H� I� J�Kg	
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Figure �	�� A PQ�tree over a set U � fA�B�C�D�E� F�G�H� I� J�Kg	

The frontier of a PQ�tree T is the sequence of all leaves of T read from left to right� and the
frontier of a node X� denoted by frontier�X�� is the sequence of its descendant leaves read
from left to right	 The frontier of the PQ�tree in Fig	 �	� is ABCDEFGHIJK	 The frontier
of a PQ�tree is a permutation of the set U 	 We use the notion frontier�T � and frontier�X�
also to denote the set of elements in frontier�T � and frontier�X�� respectively� its meaning
being evident by context	 An equivalence transformation speci�es a legal reordering of the
nodes within a PQ�tree	 The only legal equivalence transformations are

�i� any permutation of the children of a P �node� and

�ii� the reverse permutation of the children of a Q�node	

Two PQ�trees T and T � are equivalent if and only if their underlying trees are equal and T
can be transformed into T � by a sequence of equivalence transformations	 The equivalence
of two trees is denoted T � T �	 The set of consistent permutations of a PQ�tree is the set
of all frontiers that can be obtained by a sequence of equivalence transformations and is
denoted by

PERM�T � � ffrontier�T �� j T � � Tg �

A permutation 	 is said to be consistent with a PQ�tree T � if 	 � PERM�T �	

Figure �	
 shows a PQ�tree that is equivalent to the PQ�tree of Fig	 �	� yielding the
frontier BGHIKJFEDCA	 There are ��� di�erent PQ�trees in the equivalence class
of the tree of Fig	 �	�� thus the tree represents ��� di�erent permutations of U �
fA�B�C�D�E� F�G�H� I� J�Kg �see Booth and Lueker �������	 With the following the�
orem� Booth and Lueker ������ showed that for every �nite set U and every family of
subsets of U � there exists an equivalence class of PQ�trees representing all permissible
permutations of U with respect to S	
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Figure �	
� A PQ�tree equivalent to the one shown in Fig	 �	�	

Theorem ��� Booth and Lueker ���
��� Let U be a �nite set and let Si � U � � �
i � n� be subsets of U � There exists a PQ�tree T such that

PERM�T � �
n�
i��

!Si �

Remark ���� If a PQ�tree T over a set U is given� there exist n 
 � subsets Si � U such
that PERM�T � �

Tn

i��!Si� However� the subsets Si are not unique�

A universal tree T over a set U is a PQ�tree over U consisting exactly of a P �node X
as root and the set U as children of X� if jU j 
 
	 If jU j � �� then T consist of a
single leaf	 Given any PQ�tree T over a �nite set U and a subset S � U � the function
REDUCE�T� S� computes a PQ�tree T � such that PERM�T �� � PERM�T � � !S	 Using
the function REDUCE� the function REDUCTION can be reformulated as follows	

PQ�tree REDUCTION�U�S� n�
begin

construct the universal PQ�tree T of U �
for i � � to n do

T �� REDUCE�T� Si��
return T �

end	

Let T be a PQ�tree over U and S � U 	 A node X in T is said to be full if frontier�X� � S	
A node X is said to be empty if frontier�X� � S � �	 A node X is partial if it is neither
empty nor full	 Nodes are said to be pertinent if they are either full or partial	 The pertinent
subtree of T with respect to S is the subtree of minimum height whose frontier contains all
elements of S	 The pertinent subtree and its root are unique	

The function REDUCE applies a sequence of templates to the nodes of a PQ�tree starting at
the leaves� and proceeding upwards until the root of the pertinent subtree is reached	 Each
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template has a pattern and a replacement 	 If a node matches the pattern of a template�
the pattern is replaced within the tree by the replacement of the template	 The return
value of REDUCE is a new PQ�tree	 It is the null tree� a tree with no nodes at all� if the
original tree could not be reduced for the speci�ed set S	 If a null tree is returned� the set
of permissible permutations on the set U is empty and the null tree represents an empty
set of permutations	 Therefore it is convenient to denote the null tree by �	

Each template speci�es a local change within the tree	 Only the node X that has to be
matched and its children are altered	 The patterns to which nodes are matched depend
upon the set S and the frontier of the subtree rooted at the particular node X	 The
matched pattern is selected by examining the node X and its children after the children
themselves have been matched	 Depending on the situation in the frontier of X the node
is labeled indicating whether X is empty� full� or partial	 This bottom�up strategy ensures
that all information on the situation in the frontier of the children of X is available when
processing X	

Figures �	� " �	�� illustrate the template matchings	 A pattern at the left hand side is
to be transformed into a pattern at the right hand side	 A full node or a full subtree is
hatched� and a partial Q�node that roots a pertinent subtree is hatched partially	 We use
a triangle for symbolizing a subtree	 A subtree is either full or empty� so its precise form
has no e�ect on the templates	

Let X be the node in a PQ�tree T that has to be matched to a template	 If X is a P �node�
and all its children are empty� template P� �see Fig	 �	�� has to be applied� labeling X as
empty	 If X is a P �node and all its children are full� template P� �see also Fig	 �	�� has to
be applied� labeling X as full	

...

......

...

Figure �	�� Template P� and template P�	

If X is a P �node� at least one child of X is empty� at least one child of X is full� and X
is the root of the pertinent subtree� template P
 shown in Fig	 �	� has to be applied	 The
node X is left unlabeled since the reduction of T is complete	

If X is a P �node� at least one child of X is empty� at least one child of X is full� and X
is not the root of the pertinent subtree� template P� shown in Fig	 �	� has to be applied	
The Q�node that replaces X is labeled singly partial 	

If X is a P �node� at least one child of X is full� exactly one child of X is partial� and X
is the root of the pertinent subtree� template P� shown in Fig	 �	� has to be applied	 The
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Figure �	�� Template P
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Figure �	�� Template P�	

bottom up strategy in the application of the template matchings ensures that the partial
child is a Q�node labeled singly partial	 The node X is left unlabeled since the reduction
of T is complete	

... ...

... ...

... ...

...

...

Figure �	�� Template P�	

If X is a P �node� at least one child of X is full or empty� exactly one child of X is partial�
and X is not the root of the pertinent subtree� template P� shown in Fig	 �	� has to be
applied	 The Q�node that replaces X has been labeled singly partial before	

... ...

... ...
... ...

......

Figure �	�� Template P�	

If a P �node X has at least two children� and exactly two of them are singly partial�
template P� shown in Fig	 �	� has to be applied	 If this case applies� X has to be the root
of the pertinent subtree	 Otherwise� T cannot be reduced with respect to S	 Thus X is left
unlabeled	 The partial child of X is said to be doubly partial 	

The shown template matchings leave out a number of cases that can be adapted straight�
forward to existing templates	 Consider for instance a P �node X that is not the root of
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Figure �	�� Template P�	

the pertinent subtree� having only full children� and exactly one singly partial child	 Then
an apropriate modi�cation of template P� handles this case	

Q�nodes also have a number of di�erent templates	 The cases when all children are labeled
identically full or empty are taken care of by the templates Q� and Q� that are analogous
to templates P� and P�	

A Q�node X is singly partial� if it has at most one singly partial child� and if the left to
right order of the children is as shown in Fig	 �	�	 After the application of template Q
�
the node X is labeled singly partial	

... ...

... ... ... ...... ...

Figure �	�� Template Q
	

A Q�node X is doubly partial � if it has at most two singly partial children� and if the left
to right order of the children is as shown in Fig	 �	��	 After the application of template
Q�� the node X is labeled doubly partial	 As for the case of tempalte P�� X has to be the
root of the pertinent subtree	 Otherwise T is not reducible with respect to S	

... ...

... ... ...

......

......... ... ... ... ...

Figure �	��� Template Q�	

Booth and Lueker ������ achieve an ecient implementation of the template matching
algorithm by combining two strategies�

�i� scanning only the pertinent nodes in the pertinent subtree� and

�ii� keeping parent pointers only for P �nodes and endmost children of Q�nodes	
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Reducing a PQ�tree T over U with respect to S � U is then performed by a two phase
algorithm	 The �rst phase� called BUBBLE� ensures that every pertinent node in the
pertinent subtree has a valid parent pointer	 If the �rst phase reveals pertinent nodes that
do not have a valid parent pointer� we either have that template Q� applies to the root of
the pertinent subtree �none of the pertinent children of the pertinent root X is an endmost
child of X� and therefore none of these children has a valid parent pointer�� or the tree is
not reducible with respect to S	 The second phase applies the templates to the pertinent
nodes� starting at the pertinent leaves� proceeding the tree upwards to the root� processing
each node after all its children have been processed	 Using this strategy� it is possible to
show the following nontrivial theorem	

Theorem ��� Booth and Lueker ���
��� The data structure PQ�tree and the tem�
plate matchings can be implemented such that the class of permutations in which the ele�
ments of each set Si of a family S � fS�� S�� � � � � Sng of subsets of U occur as a consecutive
sequence can be computed in O�jU j� n�

Pn

i�� jSij� time�

One result that is achieved in the proof of Theorem �	� is the following corollary that
is needed later in Chapter � when proving the correctness of a level planar embedding
algorithm	

Corollary ��	 Booth and Lueker ���
��� Let X be a child of a Q�node Y � Through�
out the template matching algorithm X remains a child of a Q�node�

��� Planarity Testing

A simple planarity testing algorithm based on a divide and conquer strategy has been
presented by Auslander and Parter ������	 Goldstein ������ corrected this algorithm and
Shirey ������ showed how it can be implemented such that it needs O�n�� steps	 Using a
depth �rst search approach� Hopcroft and Tarjan ������ developed an O�n logn� time pla�
narity test based on the ideas of Auslander and Parter ������	 Tarjan ������ and Hopcroft
and Tarjan ������ later improved their own algorithm to require only linear time	 The
algorithm of Hopcroft and Tarjan ������ searches for a cycle C in a given graph G such
that the removal of C disconnects the graph	 This is done recursively for all components of
G	 C	 If every component of G	 C is planar� the algorithm checks if the components of
G	C can be arranged around C such that G is planar	 Due to its concept� the algorithm
of Hopcroft and Tarjan ������ is called a �path addition� algorithm	

A �vertex addition� approach has been applied in the planarity test of Lempel� Even� and
Cederbaum ������	 They suggested to start with a subgraph of G that is induced by a
single vertex	 This subgraph is trivially planar	 Lempel et al� then construct a sequence of
induced subgraphs of G by adding successively all vertices of G� and testing in every step if
the induced subgraph is still planar	 Tarjan ������ pointed out that this approach leads to
an O�n�� algorithm	 Booth and Lueker ������ showed that the usage of PQ�trees improves
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the algorithm of Lempel et al� ������ to a linear time algorithm	 Another approach for
testing planarity has been presented by de Fraysseix and Rosenstiehl ����
�	

Since the �vertex addition� algorithm of Lempel et al� ������ using PQ�trees is essential
for this work� a brief description of it is presented in this section	 Let G � �V�E� be
a simple graph with n vertices and m edges	 A graph is obviously planar if and only if
its biconnected components are planar �see� e	g	� Harary �������	 We therefore assume
that G is biconnected	 The biconnected components can be computed in O�n �m� time
according to Aho� Hopcroft� and Ullman ������	 Furthermore� we may assume by the result
of Corollary 
	
 that m � O�n�	

The planarity testing algorithm of Lempel� Even� and Cederbaum ������ �rst labels the
vertices of G as v�� v�� � � � � vn using an st�numbering	 A numbering of the vertices of G by
�� 
� � � � � n is an st�numbering if the vertices v� and vn are adjacent and each other vertex
vj is adjacent to two vertices vi and vl such that i � j � l	 The vertex v� is denoted by s
and the vertex vn is denoted by t	 An st�numbering can be computed in O�n� time as has
been shown by Even and Tarjan ������	 The st�numbering induces an orientation of the
graph� in which every edge is directed from the incident vertex with the lower st�number
towards the incident vertex with the higher st�number	 Thus it is convenient to say that
an edge �vi� vj� with i � j is an incoming edge of vj and an outgoing edge of vi	

For the following� let us suppose that we have a �xed st�numbering of G	 For � � i � n� let
Gi denote the subgraph of G induced by the vertex set Vi �� fv�� v�� � � � � vig	 The strategy
of Lempel et al� ������ is to start with G� induced by fsg � V and to proceed by adding
vertices to the subgraph� constructing the sequence of subgraphs Gi� for i � �� 
� � � � � n	
When adding a vertex vi�� to Gi in order to construct Gi��� it is tested if this operation
preserves planarity of the induced subgraph	 If the test fails� the graph G is obviously not
planar	

For � � i � n� let G�
i be the graph arising from Gi as follows� For each edge e � �u� v��

where u � Vi and v � V 	 Vi� we introduce a virtual vertex ve with label v and a virtual
edge �u� ve�	 Let Bi be a planar embedding of G�

i such that all virtual vertices are placed on
the outer face	 Such a Bi is called a bush form of G�

i	 It has been shown by Lempel et al�
������ that G is planar if and only if for every � � i � n	 � and for every bush form Bi of
G�

i there exists a bush form B�
i equivalent to Bi such that all virtual vertices labeled vi��

appear consecutively in B�
i	 Figure �	�� shows an example taken from Chiba and Nishizeki

������ showing a graph G with an st�numbering� a graph Gi and a bush form Bi for i � �	
The following lemma implies that every planar st�numbered graph G has a bush form Bi

for � � i � n	 �	

Lemma ��
 Even ������� Let G � �V�E� be a planar graph with an st�numbering and
let � � i � n� If the edge �s� t� is drawn on the boundary of the outer face in a planar
drawing of G� then all vertices and edges of G	Gi are drawn in the outer face of Gi�

Given a bush form Bi� we construct a new bush form B�
i �that is� a new planar embedding

of G�
i with all virtual vertices drawn on a line in the outer face of Gi� by permuting for every
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Figure �	��� An example of an st�numbered graph G� a Gi with i � �
and its bush form	 The virtual vertices in �c� are not �lled	

cut vertex v � Vi the components of G�
i 	 fvg around v� and by reversing ��ipping over�

the biconnected components	 The key idea of the vertex addition algorithm is to reduce
the planarity testing of Gi�� to a problem that asks for permutations and reversions to
make all virtual vertices labeled vi�� occupy consecutive positions	 If such permutations
and reversions can be found� the vertex vi�� obviously can be introduced to Gi without
destroying planarity	 Figure �	�
 shows a bush form B�� and an equivalent bush form
B�

��	 The virtual vertices labeled v�� occupy consecutive positions in B�
��	 The following

nontrivial lemma guarantees that the transformation is possible	

Lemma ��� Lempel et al� ��
���� Let Bi be any bush form of a subgraph Gi of a
planar st�numbered graph G� Then there exists a sequence of permutations of components
of Gi 	 fvg around cut vertices v � Vi� and reversions of biconnected components to make
all the virtual vertices labeled vi�� appear consecutively on a horizontal line�

Computing the permutations and reversions of Bi such that all virtual vertices labeled vi��
appear consecutively can be done eciently using the PQ�tree data structure	 While the
original algorithm of Lempel et al� ������ needs O�n�� steps �see Tarjan �������� the usage
of PQ�trees yields an O�n� time algorithm	 For every bush form Bi� a PQ�tree Ti that
represents all possible �with respect to a plane embedding� permutations of the virtual
vertices on the horizontal line is conceived by introducing

�i� a leaf for every virtual edge of Bi�

�ii� a P �node for every cut vertex in Bi�

�iii� a Q�node for every biconnected component in Bi�

�iv� rooting Ti at the node corresponding to the vertex s	
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� Two equivalent bush forms B�� and B�
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Figure �	��� A PQ�tree corresponding to bush form B�� of Fig	 �	�
	

Figure �	�� shows a PQ�tree corresponding to the bush form B�� of Fig	 �	�
	

Rather than constructing a PQ�tree for every bush form Bi� the modi�ed planarity test
starts with a universal PQ�tree T� for the bush form B�	 For every i � �� 
� � � � � n	 � the
tree Ti is then reduced with respect to the leaves that correspond to the incoming edges
of the vertex vi��	 If the reduction was successful� the subgraph Gi�� is planar	 The leaves
in Ti corresponding to virtual edges incident to a vertex vj� i � j � n� are called leaves
labeled vj	 A reduction of Ti with respect to the leaves labeled vi�� is called a reduction of
Ti with respect to vi��	

After a successful reduction with respect to the leaves labeled vi��� the PQ�tree Ti�� is
constructed from Ti� using a function REPLACE	 The full nodes in the pertinent subtree
with respect to vi�� are replaced by a P �node� whose children are the leaves corresponding
to the outgoing edges of the vertex vi�� in G	 In case that the vertex vi�� has just one
outgoing edge e� we do not introduce a new P �node but replace the full nodes by a single
leaf corresponding to e	 The parameter Sred in the function REPLACE denotes the set
of incoming edges of vi�� and the parameter Snew denotes the set of outgoing edges of a
vertex vi��	 Since the vertices of the graph G are reduced according to an st�numbering�
the set Snew is not empty	
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void REPLACE�Sred�Snew�
begin

if jSnewj 
 
 then
let X be a new P �node�
add the elements of Snew as leaves to X�

else if jSnewj � � then
let X be a leaf corresponding to the only element of Snew�

if the root R of the pertinent subtree is full then
replace the pertinent subtree with respect to Sred by X�

else
replace the �consecutive� sequence of full children of R by X�

end	
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Figure �	��� Illustration of function REPLACE	

Figure �	�� illustrates the replacement step	 In Fig	 �	���a� a pertinent subtree with respect
to leaves labeled vi�� is shown	 The root of the pertinent subtree is full	 The corresponding
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part of the bush form is shown in Fig	 �	���c�	 By identifying all virtual vertices labeled
vi��� and adding virtual edges Snew � f�vi��� vl��� �vi��� vl��� �vi��� vl��g the bush form Bi��

as shown in Fig	 �	���d� is constructed	 The corresponding new PQ�tree of the bush form
Bi�� is shown in Fig	 �	���b�	

The function REPLACE is used in subsequent algorithms presented in this work	 For a
correct application of REPLACE it is sucient that the PQ�tree has been reduced with
respect to the set Sred before calling the function REPLACE	

The following theorem is based on the results of Lemma �	�� Theorem �	�� and Corollary 
	
	

Theorem ��� Booth and Lueker ���
��� Given a graph G � �V�E�� the described
planarity test requires O�n� time�

Let Ti be a PQ�tree corresponding to a bush form Bi� and let X be a Q�node in Ti	
As mentioned before� the Q�node corresponds to a biconnected component b in Bi	 The
children ofX each correspond to a cut vertex on the border of the outer face of b	 IfX is not
the root �which is always the case for the planarity test� but not for some other algorithms
that are discussed later in this work�� then there exists an extra cut vertex on the border of
the outer face of b that separates the subgraph G� induced by the subtree rooted at X from
G	G�	 This cut vertex is called the connective cut vertex of b	 Figure �	�� gives an example
of a Q�node having four children	 Every child of the Q�node corresponds to one of the four
cut vertices c�� c�� c�� c�	 Since the Q�node is not the root of the PQ�tree� there exists a cut
vertex c� associated with the parent of the Q�node	 The vertex c� is the connective cut
vertex	 The connective cut vertex of a P �node Y is the cut vertex corresponding to Y 	

c�

c�

c�c�c� c� c�

c�
c�

c�

Figure �	��� The biconnected component corresponding to the Q�node
has �ve cut vertices on the border of its outer face	 The vertex c� is its
connective cut vertex	

��� Embedding Planar Graphs

Most applications require not only testing the planarity of a graph but also embedding
�or drawing� a planar graph in the plane	 For both� the �path addition� and the �vertex
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addition� planarity test� modi�ed versions have been developed to compute a planar em�
bedding of a planar graph	 An embedding algorithm based on the Hopcroft and Tarjan
������ algorithm has been presented by Mutzel ����
�� and Mehlhorn and Mutzel ������	

A modi�cation of the Booth and Lueker planarity testing algorithm to obtain a planar
embedding algorithm for planar graphs has been given by Chiba� Nishizeki� Abe� and
Ozawa ������	 A brief description of this algorithm is given in this section	 We may assume
for the rest of this section that the graph G that has to be embedded is planar	

The embedding algorithm is based on the observation that a naive embedding algorithm
can be obtained easily as follows	

�	 Write down the partial embedding of the bush form B�	


	 With each reduction of the PQ�tree� rewrite the adjacency lists of the bush form	

Clearly� the �nal bush from is an embedding of the graph	 However� the algorithm needs
O�n�� time since it takes O�n� time per reduction of the PQ�tree to update the adjacency
lists of the bush form	 As mentioned in the previous section� an st�numbering induces
an orientation of G	 Let Gst be the graph of G such that every edge is oriented from
the lower numbered vertex to the higher numbered vertex	 Since G is planar� the graph
Gst is an upward planar st�graph	 Chiba et al� ������ �and also independently Tamassia
and Tollis ������� and Rosenstiehl and Tarjan ������� observed the following interesting
characteristics of planar st�graphs	

Lemma ��� Chiba et al� ���	��� Consider a planar embedding of a graph G �st�
numbered by v�� v�� � � � � vn� by the naive embedding algorithm� For every � � j � n� all
neighbors vi of vj with j � i appear consecutively around vj as do all neighbors vi with
j � i�

The embedding algorithm consists of two stages�

�i� Construct an upward planar embedding Est of Gst	

�ii� Construct the entire planar embedding E of G from the upward planar embedding
Est of Gst	

First� we consider how to compute an upward planar embedding	 Let the adjacency lists
adj st�vi� represent the graph Gst	 During the algorithm� a PQ�tree Ti is reduced with
respect to the leaves labeled vi�� constructing a PQ�tree T �

i 	 Let Xi�� be the root of the
pertinent subtree of T �

i with respect to vi��	 The adjacency list adj st�vi��� then is obtained
by scanning the leaves labeled vi�� in T �

i from left to right or vice versa	 If adj st�vi��� is
correctly determined in step i� then by counting the number of subsequent reversions of
the node Xi�� the direction of adj st�vi��� is corrected if the number of reversion is odd	

However� a straightforward method for determining the direction of adj st�vi��� in T
�
i would

require O�n� time	 Rather than determining the direction� the algorithm of Chiba et al�
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������ adds a new special node to the tree as a child to Xi��	 The new node is called
direction indicator and is labeled vi��	 The indicator covers two tasks	

�i� A direction indicator labeled vi�� traces subsequent reversions of the incoming edges
of vi��	

�ii� A direction indicator labeled vi�� transfers the relative direction of the incoming
edges of the node vi�� to its siblings	

In subsequent reductions of PQ�trees Tj� i� � � j � n� the presence of the direction indi�
cator is ignored	 In the vertex addition step of vj�� the sequence of pertinent leaves labeled
vj�� and all direction indicators contained within the pertinent sequence are scanned	 The
incoming edges of vj�� corresponding to the pertinent leaves and the direction indicators
within the pertinent sequence are stored in adj st�vj��� in the order they have been de�
tected	 When the reduction of the PQ�tree Tn�� with respect to the vertex vn is complete�
the adjacency lists are scanned in reverse order	 When detecting a direction indicator of a
vertex vi in the adjacency list of a vertex vj with i � j� and the indicator indicates an odd
number of reversions of the vi� the list adj st�vi� is reversed	

Chiba et al� ������ showed how to implement this strategy� using only O�n� time to com�
pute the upward embedding Est of Gst	 Finally the upward embedding is extended to a
planar embedding by applying a simple depth��rst�search starting at vn and adding a ver�
tex v to the top of the adjacency list adj st�w� when the directed edge �w� v� is visited in
adj st�v�	 Due to the characteristics of the st�numbering� Chiba et al� ������ proved that
this leads to a correct planar embedding� yielding the following theorem	

Theorem ���� Chiba et al� ���	��� There is a linear time algorithm to test whether
a graph G � �V�E� is planar� and if so� it outputs a planar embedding�

��� Planarity Testing and Embedding of Cluster

Graphs

It appears that c�planarity testing is not a trivial extension of planarity testing of classical
graphs	 Consider for example the cluster graph in Fig	 �	�� taken from Feng� Cohen� and
Eades ������	 Suppose that the vertices on the three triangles belong to three separate
clusters	 It is obvious that the graph is planar� and the graph obtained by collapsing any
cluster into a vertex is also planar	 However� this cluster graph is not c�planar	

A �rst algorithm for testing a connected cluster graph for c�planarity in quadratic time has
been presented by Lengauer ������ using a sophisticated approach that decomposes the
graph	 Feng et al� ������ obviously were not aware of the algorithm presented by Lengauer
������� possibly because Lengauer used the term �hierarchy� for cluster graphs which
may cause confusion in the graph drawing community	 Feng et al� describe an algorithm
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�a� �b�

Figure �	��� A planar but not c�planar clustered graph	

for testing c�planarity and �nding a c�planar embedding of connected cluster graphs in
O�n�� time using the PQ�tree data structure	 Very recently� Dahlhaus �����a� described
an algorithm that tests a connected cluster graph in O�n� time for c�planarity� and also
allows to compute a c�planar embedding in O�n� time	 The approach of Dahlhaus �����a�
is based on the strategy of Lengauer ������� also decomposing the graph	 We mention that
the decomposition of the graph is quite similar to the decomposition of graphs performed
by SPQR�trees of Di Battista and Tamassia ������	 Up to now� no implementation of the
linear time c�planarity test exists as Dahlhaus �����b� con�rms� while implementations of
the c�planarity test using PQ�trees are available �see� e	g	� Liebel �������	

The algorithm of Feng et al� ������ is based on the following theorem giving a necessary
and sucient condition for the c�planarity of connected graphs	

Theorem ���� Feng et al� ���	��� A connected cluster graph C � �G� T � is c�planar
if and only if G is planar� and there exists a planar drawing D of G� such that for each
node � of T � all vertices and edges of G 	 G��� are in the outer face of the drawing of
G����

Feng et al� ������ gave also a characterization of c�planarity for general cluster graphs	

Theorem ���� Feng et al� ���	��� A cluster graph C � �G� T � is c�planar if and
only if it is a subcluster graph of a connected and c�planar cluster graph�

Unfortunately� it is not known how to extend a nonconnected clustered graph to a connected
one without destroying c�planarity in polynomial time	 In fact� while testing for c�planarity
has been solved for connected cluster graphs� the problem whether an unconnected cluster
graph can be tested for c�planarity in polynomial time is still unsolved	

The algorithm of Feng et al� ������ is based on Theorem �	��	 Given a connected cluster
graph C � �G� T �� it is tested whether there is a planar embedding of G such that for
each node � of T the subgraph G 	 G��� is embedded in the outer face of G���	 The
subgraphs induced by the clusters are embedded one by one� following a traversal of T
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from bottom to top	 For each node � of T the subcluster graph G��� is tested whether
it has any planar embedding that satis�es the conditions of Theorem �	�� for C��� �and
if so all these embeddings are stored implicitly�	 If the algorithm proceeds successfully to
the root cluster� and such an embedding exists for the root of T � then the cluster graph
is c�planar	 In order to construct a c�planar embedding of G a traversal of T from top to
bottom is performed� embedding recursively for each cluster the corresponding subgraph
using the information gathered while testing the graph for c�planarity	

We now give a brief description of the c�planarity test	 For a node � of T with children
��� ��� � � � � �k we try to �nd an embedding of the subgraph G��� satisfying the conditions of
Theorem �	�� by combining the possible embeddings of each child cluster �i� i � �� 
� � � � � k�
that are found recursively	 If the construction of such an embedding terminates success�
fully� the subgraph G��� is replaced in G by a representative graph	 The objective of a
representative graph is to allow only those embeddings that mirror all possible orderings
of edges that are incident to cluster � in a c�planar embedding	 The replacement of G���
by its representative graph is done recursively for every node � of the tree T 	 Thus the
graph G is changed at every node � of the inclusion tree	

At cluster �� the subgraph G��� is not only tested for planarity but it is also tested if the
edges that are incident to cluster � can be drawn in the outer face of G���	 A graph G����
is constructed by adding virtual edges to G���� each virtual edge corresponding to an edge
incident to cluster �	 Every virtual edge is equipped with a virtual vertex and G���� is the
graph that results from connecting all virtual edges to a single vertex t� 	

Feng et al� ������ showed that all virtual edges are contained in the same biconnected
component B of G����	 An st�numbering is computed for the biconnected component B by
choosing the single virtual vertex t� as sink and any vertex s� of G���� that is connected
to t� as source	 Using this st�numbering� the planarity test of Booth and Lueker ������ is
applied to G����	 If the planarity test returns true� then G���� is planar� and by Lemma �	�
all edges incident to cluster � can be drawn in the outer face of G���	 After the planarity
test has been performed successfully at G����� the subgraph G��� is replaced in G by a
representative graph	 The representative graph of G��� is constructed such that the only
possible planar embeddings are those� where

�i� the edges incident to the cluster � �and therefore incident to a vertex in G���� are
embedded in the outer face of the representative graph�

�ii� the edges incident to the cluster � appear exactly in those orderings as in all planar
embeddings of G���� with the edge �s�� t�� drawn on the outer face of G����	

The representative graph can be constructed in O�n� time by help of the PQ�tree as it
exists before the �nal reduction of the leaves corresponding to the virtual vertex t� of �	
Using a representative graph for each child of a cluster �� Feng et al� ������ showed that
the cluster � itself can be tested for c�planarity	

In order to construct a c�planar embedding of a cluster graph C � �G� T �� the PQ�tree
techniques of Chiba et al� ������ are applied	 Feng et al� ������ �nd a circular ordering of
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the edges incident to each cluster recursively� following a traversal of the tree from top to
bottom	 Storing for each cluster its corresponding PQ�tree during the c�planarity testing�
an arbitrary embedding is chosen for the cluster G���� if � is the root of T 	 Using the
c�planar embedding of G��� of any cluster �� the c�planar embeddings of all its children
can be then recursively computed	

Since the c�planarity testing algorithm has to replace for every cluster � the subgraph G���
by its representative graph� the algorithm needs O�n�� time	 The results of the algorithm
of Feng et al� ������ are stated in the following theorem	

Theorem ���� Feng et al� ���	��� There is an O�n�� time algorithm using the PQ�
tree data structure to test whether a clustered graph C � �G� T � is c�planar� and if so� it
outputs a c�planar embedding�

��� The Maximal Planar Subgraph Problem

In Automatic Graph Drawing� a widely�used method for drawing nonplanar graphs is to
transform the graph into a planar graph� and then use planar graph drawing methods	 A
popular method for this transformation is to delete edges in order to get a planar sub�
graph� and to reinsert the removed edges after embedding the planar subgraph such that
the number of edge crossings is small	 Similarly� in VLSI�design the thickness problem is
approximated by successively subtracting large planar subgraphs from a given nonplanar
graph	 However� Liu and Geldmacher ������ showed that the problem of �nding the min�
imum number of edges that have to be removed from a given graph in order to obtain a
planar subgraph is NP�hard	 The �rst algorithm for solving this problem was a branch and
bound algorithm suggested by Foulds and Robinson ������	 However this approach was
only useful for very small and dense graphs	 Mutzel ������ and J�unger and Mutzel ������
attacked the maximum planar subgraph problem by a branch and cut technique that gave
good and in many cases provably optimum solutions for sparse as well as for very dense
graphs	

Due to the NP�hardness of the problem the attention has focused on computing maximal
planar subgraphs	 Let G � �V�E� be a simple graph with n vertices and m edges	 Then
a planar subgraph G� of G is a maximal planar subgraph if for all edges e � G 	 G�

the addition of e to G� destroys planarity	 Besides a trivial O�nm� algorithm that can be
constructed using any O�n� planarity test� three di�erent approaches are known for solving
this problem	

Chiba� Nishioka� and Shirakawa ������ presented an algorithm based on the path addition
algorithm that computes a maximal planar subgraph in O�nm� time	 Cai� Han� and Tarjan
������ presented later anO�m logn� algorithm that is based on the path addition algorithm
as well	

Based on the strategy of incremental planarity testing� Di Battista and Tamassia ������
described an algorithm that checks in O�logn� amortized time per edge insertion� whether
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an edge can be added to G without destroying planarity� obtaining an O�m logn� time
algorithm as well	 Using an approach similar to the approach of Di Battista and Tamassia
������� Westbrook ����
� describes an algorithm that works inO�n logn�m
�m�n�� worst
case time plus an additional O�n� expected time	 La Poutr�e ������ gave an incremental
planarity test that takes O�
�m�n�� amortized time per edge insertion yielding an O�n�
m
�m�n�� time algorithm	 Djidjev ������ gave an O�n�m� time algorithm using SPQR�
trees and special dynamic data structures that allow set union and set split operations
in constant amortized time	 So far� this algorithm provides the best known running time	
However� it is extraordinary dicult to implement� and as Djidjev ������ con�rms� no
implementation is known	

Ozawa and Takahashi ������ have presented an O�nm� algorithm using the vertex addi�
tion algorithm	 Jayakumar� Thulasiraman� and Swamy ������ showed that in general this
algorithm does not determine a maximal planar subgraph	 Moreover� the resulting planar
subgraph may not even contain all vertices	 Jayakumar� Thulasiraman� and Swamy ������
presented an algorithm called PLANARIZE that computes a spanning planar subgraph
Gp of G in O�n�� time	 Furthermore� they present an algorithm called MAX�PLANARIZE
that augments Gp to a subgraph G� of G by adding additional edges in O�n�� time	 They
claim that G� is a maximal planar subgraph of G if Gp �the result of phase � of the two
phase algorithm� turns out to be biconnected	 Kant ����
� shows that this algorithm is
incorrect� and suggests a modi�cation of the second phase of the algorithm that augments
Gp to a maximal planar subgraph of G� even if Gp is not biconnected� maintaining O�n��
time requirement	

In this section� we describe a substantial �aw in both the original and the modi�ed two
phase algorithm that was not detected previously as well as new mistakes introduced by
Kant	 First� the principle of the planarization algorithm using the PQ�trees is described	
Then� we show that the algorithm of Jayakumar et al� is incorrect	 We give a detailed
description of the major mistake	 We �nish by discussing the attempt of Kant and make
some concluding remarks in the last section	

����� A Principle of an Approach for Planarization

The basic idea of a planarization algorithm using PQ�trees presented by Jayakumar et al�
������ is to construct �following the algorithm of Booth and Lueker ������� a sequence of
PQ�trees T�� T�� � � � � Tn�� by deleting an appropriate number of pertinent leaves every time
the reduction fails such that the resulting PQ�tree becomes reducible	 In every step of the
algorithm PLANARIZE� a maximal consecutive sequence of pertinent leaves is computed
by using a #w� h� a$�numbering �see Jayakumar et al� �������	 All pertinent leaves that are
not adjacent to a maximal pertinent sequence are removed from the PQ�tree in order to
make it reducible	 Hence� the edges corresponding to the leaves are removed from G and
the resulting graph Gp is planar	

It has been shown by Jayakumar et al� ������ that the graphGp computed by PLANARIZE
is not necessarily maximal planar	 The authors therefore suggest to apply a second phase
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called MAX�PLANARIZE� also based on PQ�trees	 Knowing which edges have been re�
moved from G to construct Gp� edges from G 	 Gp are added back to Gp in the second
phase without destroying planarity	

During the reduction of a vertex vi� � � i � n� there may exist nonpertinent leaves that
are in all permissible permutations of the PQ�tree Ti�� between a pertinent leaf l� and
a maximal pertinent sequence of pertinent leaves	 The maximal pertinent sequence has
been determined by the help of the #w� h� a$�numbering	 In order to make the tree Ti��

reducible� the leaf l is removed from the tree and the corresponding edge is removed from
the graph G� guaranteeing that the subgraph Gp will be planar	 However� it may occur that
the nonpertinent leaves that are positioned between l and the maximal pertinent sequence
in Ti��� are removed as well from a tree Tj� i � j � n� in order to obtain reducibility	
Therefore� there is no need to remove the edge corresponding to l from the graph G	

In order to �nd leaves such as l� Jayakumar et al� ������ use the algorithm MAX�
PLANARIZE	 In step i� both PLANARIZE as well as MAX�PLANARIZE reduce the
same vertex vi	 The di�erence between the PQ�trees in the two algorithms is according to
the authors that all leaves that have been deleted in PLANARIZE are ignored in MAX�
PLANARIZE from the moment they are introduced into the tree until they get pertinent	
This causes the nonpertinent leaves between the pertinent leaf l and its maximal pertinent
sequence to be ignored	 Hence l is adjacent to its maximal pertinent sequence and the
corresponding edge can be added back to Gp� while the leaves between l and the maximal
pertinent sequence are removed from the PQ�tree	

����� On the Incorrectness of the Algorithm

While some incorrect details of the approach of Jayakumar et al� have been described in a
technical report by Kant ����
�� who attempted to correct the algorithm� a major problem
has not been detected	

Jayakumar et al� assume that the maximal planar subgraph Gp is biconnected for the
correct application of the Lempel�Even�Cederbaum algorithm	 Furthermore� as they have
stated correctly� this is necessary in order to have an st�numbering	 Nevertheless� the
PQ�trees in MAX�PLANARIZE are constructed according to the st�numbering that was
computed for the graph G	

As a matter of fact� the st�numbering of G in general does not induce an st�numbering of
a subgraph Gp even if the subgraph Gp is biconnected	 This results in two problems� of
which one is crucial and cannot be dealt with even by the ideas described by Kant ����
�	

Both problems are based on the fact that during the application of PLANARIZE for some
vertices of V all outgoing edges may be deleted from the graph while the resulting graph
Gp stays biconnected	

Let vi � V � � � i � n� be such a node with no outgoing edges inGp	 SinceGp is biconnected�
vi must have at least two incoming edges �v�� vi� and �v�� vi�� with �� � � i	 Let vj � V
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be a vertex in G such that j � i� hence the leaves corresponding to the incoming edges
of vj are reduced before the leaves of vi	 Let Tj�� be the PQ�tree during the application
of MAX�PLANARIZE in which the leaves corresponding to the incoming edges of vj have
to be reduced	 Assume that the leaves of both vertices vj and vi are on the outer face of
the same biconnected component of the bush form that corresponds to the PQ�tree Tj��	
Assume further that one designated leaf vjk�� of the vertex vj is separated by the leaves
vi� and vi� corresponding to �v�� vi� and �v�� vi� from the leaves vj�� vj�� � � � � vjk � where the
latter form the maximal pertinent sequence �see Fig	 �	�� for an illustration�	

vi� vjk��vj� vj� vjk vi�

Figure �	��� Leaf vjk�� is separated by vi� and vi� from its maximal per�
tinent sequence vj�� vj�� � � � � vjk 	

If �v�� vi� and �v�� vi� are the only incoming edges of vi in Gp� then the leaves vi� and vi� will
be replaced after the reduction of the PQ�tree Ti�� by a P �node with leaves corresponding
to edges in E 	 Ep	 Hence� if the vertex vi had been reduced before the vertex vj� then
MAX�PLANARIZE would have considered the leaf vjk�� as being adjacent to the maximal
pertinent sequence vj� � vj�� � � � � vjk 	 The edge corresponding to the leaf vjk�� could have been
added to the graph Gp without destroying planarity	 In case that none of the outgoing edges
of vi is added to Gp in a PQ�tree Tl� i � l � n� the resulting graph Gp is not a maximal
planar subgraph	

We now consider the second problem	 The planarization algorithm of Jayakumar et al�
������ does not obey an important invariant implied by Lemma �	�	 This result allowed
Lempel� Even� and Cederbaum ������ to transform the problem of planarity testing to the
construction of a sequence of bush forms Bk	 For a planar graph G� edges and vertices
that have not been introduced into the current subgraph Gk are always embedded into the
outer face of Gk	

The approach of Jayakumar et al� ������ does not obey this invariant in the second phase	
There exist edges that have to be embedded into an inner face of some Gk� even if �s� t� is
drawn on the outer face	 Due to the above lemma� the correction step MAX�PLANARIZE
only considers edges for reintroduction into the planar subgraph Gp that are on the outer
face of the current graph Gk	 Since the numbering that is used to determine the order in
which the vertices are reduced does not correspond to an st�numbering of Gp in general�
the algorithm of Jayakumar et al� ������ ignores edges that have to be added into an inner
face of the embedding of a current graph Gk	 This fact is fatal� as we are about to show
now	

In Fig	 �	��� a part of a bush form Bk�� of a graph G is shown	 The virtual vertices
corresponding to the vertex vk are labeled k�� k�� � � � � k� and all other virtual vertices are
left unlabeled	 The corresponding part of the PQ�tree is shown in Fig	 �	��	 Obviously�
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Figure �	��� Part of a bush form Bk��	

k 1 k 2 k 3 k 4 k 5

Figure �	��� Part of a PQ�tree corresponding to bush form Bk��	

there do not exist any reversions or permutations such that the virtual vertices of vk occupy
consecutive positions	 Hence� the graph G is not planar	 Applying the #w� h� a$�numbering
of Jayakumar et al� ������ allows us to delete the virtual vertex labeled k� and to reduce the
other four vertices labeled k�� k�� k�� k�	 The resulting graph Gk is planar� and the relevant
part of a bush form Bk is shown in Fig	 �	
�	 Figure �	
� shows the corresponding part of
the PQ�tree	 Assume now that all leaves corresponding to the outgoing edges of vk have
to be removed from the PQ�tree in a later step	 Hence all outgoing edges incident on vk
are removed from the graph	 Now assume further that there exists a path vi� � vi� � � � � � vil in
Gp such that

 for all �� �� � � � � � � l� the inequality i� � i� holds�

 the edge �vi� � vi�� corresponds to one of the leaves that are between the leaf labeled k�
and the maximal pertinent sequence of leaves labeled as k�� k�� k�� k� in all PQ�trees
equivalent to Tk���

 vil � t	
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vk

Figure �	
�� Part of a bush form Bk	

Figure �	
�� Part of a PQ�tree corresponding to bush form Bk	

This path guarantees that all incoming edges of the vertex vk cannot be embedded into
the outer face of the embedding of Bk�� without crossing an edge on this path	 Hence the
edge ek� corresponding to the leaf labeled k� is not considered by the algorithm MAX�
PLANARIZE as being an edge that does not destroy planarity	 Therefore� ek� is not added
back to the planar subgraph Gp	

Nevertheless adding the edge ek� to Gp may not destroy planarity of Gp as is shown in
our example in Fig	 �	

	 Since all outgoing edges of the vertex vk have been deleted by
PLANARIZE and are not added back by MAX�PLANARIZE� it may be possible to swap
the vertex vk into an inner face of the embedding of Bk such that the virtual vertex labeled
k� can be identi�ed with vk and the edge ek� is embedded into the bush form Bk without
destroying planarity	

Therefore� the strategy of using PQ�trees presented by Jayakumar et al� ������ does not
compute a maximal planar subgraph in general	 Furthermore� we point out that the same
problem holds for the modi�ed version of this algorithm� presented by Kant ����
�	 This
version follows a similar strategy of computing a spanning planar subgraph Gp using PLA�
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Figure �	

� Part of a bush form Bk with ek� embedded	

NARIZE and then adding edges that do not destroy planarity in a second phase	 The
order of vertex additions to the planar subgraph is the same as the one implied by the st�
numbering on G	 Hence this approach is not able to compute a maximal planar subgraph
for the same reason	

Summarizing� we state the following lemma that has been shown in the discussion above	

Lemma ����� Let G � �V�E� be a nonplanar graph� Let Gp � �V�Ep�� Ep � E� be a
planar subgraph of G� such that Gp was obtained from G by

	� computing an st�numbering for all vertices and


� applying the algorithm of Lempel� Even� and Cederbaum �	��� constructing a se�
quence of bush forms Bk��� k � 
� �� � � � � n� by embedding a maximal number of
incoming edges of a vertex vk in the outer face of Bk�� without crossings� deleting all
other incoming edges of vk�

Let G�
p � �V�E �

p�� be a planar subgraph of G such that

	� Ep � E �
p � E�


� the graph G�
p is computed by constructing a sequence of bush forms B�

k��� k �

� �� � � � � n� based on the st�numbering used for determining Gp� and possibly em�
bedding incoming edges e � E 	Ep of every vertex vk� without crossings in the outer
face of Bk���

Then the subgraph G�
p is not necessarily maximal planar�
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Considering a computation of an st�numbering for the planar subgraph Gp in order to
augment Gp to a maximal planar subgraph of G and then construct a sequence of bush
forms B�

k��� k � 
� �� � � � � n� is aggravated by the fact that the graph Gp is not biconnected
in general	 Furthermore� the di�erence between the bush forms of the �rst phase and the
second phase may result in the deletion of the edges of Gp as soon as edges of E 	 Ep are
added to Gp	 Adding an edge e � E 	 Ep to Gp is able to change the corresponding bush
form in such a way that the pertinent leaves corresponding to the incoming edges of some
node v in Ep cannot form a consecutive sequence in any permissible permutation	

����� Further Problems

We show now that even if the st�numbering of G is as well an st�numbering of Gp� and
even if we consider the suggested modi�cations of Kant ����
�� the algorithm presented
by Jayakumar et al� ������ still does not work correctly	

Kant ����
� suggested a correction of the second phase by introducing sequence indicators
and by delaying the decision� whether a deleted leaf can be added back to Gp� until enough
information is available	 In his version of MAX�PLANARIZE� a leaf l that was deleted
in PLANARIZE will be a normal nonpertinent leaf which is not ignored until it becomes
pertinent	 Again� the maximal pertinent sequence of a vertex vi is reduced	 This maximal
pertinent sequence is the same as in PLANARIZE	 The pertinent leaves that are not ad�
jacent to the maximal pertinent sequence stay in the PQ�tree and their presence will be
ignored in the template matching algorithm from then on	 They are called potential leaves	
If potential leaves of a vertex vi remain in the tree after the reduction of vi� a sequence
indicator hvii is added to the tree in order to indicate the position of the reduced perti�
nent sequence	 The presence of the sequence indicator will be ignored as well	 If a node X
contains only nodes in its frontier that are ignored� X is itself an ignored node	 Applying
this idea� a sequence of PQ�trees T�� T�� � � � � Tn�� is constructed during the augmentation
phase that is equivalent to the sequence of PQ�trees constructed during the �rst phase	
This ensures that the corresponding bush forms of both phases are equivalent	 In order to
augment Gp to the maximal planar subgraph G�

p� edges are added to Gp� when their cor�
responding leaf and its sequence indicator can be reduced by deleting only other potential
leaves and sequence indicators	 Doing this� it is not allowed to bind empty nodes to new
places since this would change the equivalence class of the actual PQ�tree	

Let l be a potential leaf and denote the corresponding virtual vertex by v�l�	 A potential
leaf l is near its sequence indicator hv�l�i if and only if the PQ�tree Ti can be reduced with
respect to l and hv�l�i� by deleting only ignored nodes� and not binding empty nodes to new
places	 If a potential leaf l is near its sequence indicator hv�l�i� then l and hv�l�i are called
a near pair 	 Not every near pair� formed by a potential leaf and its sequence indicator� can
be reduced	 In general� we have to choose between di�erent near pairs� since the reduction
of one near pair might cause the deletion of the other	 This is� in particular� typical for
near pairs that intersect	 Two near pairs l� hv�l�i and l�� hv�l��i are called intersecting in
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Ti� if either l
� or hv�l��i is between l and hv�l�i in all equivalent PQ�trees of Ti	 In this case

only one edge corresponding to l or l� can be embedded into the outer face of the current
bush form without causing a crossing	

Kant ����
� suggests to test for near pairs just within the maximal pertinent sequence�
since by de�nition there will be no empty nodes inside the pertinent sequence	 A near pair
is found while applying the pattern matching algorithm of Booth and Lueker ������ to
the maximal pertinent sequence	 Every time a pertinent node X is matched� we search for
near pairs l and hv�l�i in the frontier of X� where X is the �rst common ancestor of l and
hv�l�i	

This search can be done eciently using two arrays PLX and SIX that are introduced for
every internal node X in the maximal pertinent sequence	 In PLX #i$ those children of X
are stored that are ancestors of some potential leaves corresponding to edges �vj� vi�� j � i�
while SIX #i$ contains the children that are ancestors of some sequence indicator hvii	 It
can be shown that by using the PLX and SIX arrays all near pairs will be found �see Kant
����
�� Leipert �������	 After �nding a near pair l� hv�l�i we make sure that before the
near pair is reduced� the �rst common ancestor X of l� and hv�l�i is a Q�node	 This can
obviously be done without changing the equivalence class of the PQ�tree	

Kant ����
� now suggests a reduction process which is encapsulated within a procedure
REDUCE�NEAR and that begins with the �rst common ancestor X of the near pair l�
hv�l�i and goes down the PQ�tree to l and hv�l�i	 An ignored P �node is said to be of type
U if all children except one child� yet unknown� must be removed with their descendants
from the PQ�tree in a later step	 An ignored Q�node is said to be of type U if it has one
special marked child Y � and all children of the Q�node between Y and one of the endmost
children� yet unknown� must be removed with their descendants from the PQ�tree in a
later step	

We now give a brief description of the reduction process	 After a near pair l� hv�l�i is found�
the following situation occurs� A Q�node X is the �rst common ancestor of l and hv�l�i�
and the leaf l corresponds to some incoming edge of a vertex vi	 There exists a sequence
Y�� Y�� � � � � Yk� k 
 
� of children of X� such that� say� Y� is an ancestor of l and Yk is an
ancestor of hv�l�i and the children Y�� Y�� � � � � Yk�� between Y� and Yk are ignored	

First� all children Y�� Y�� � � � � Yk�� and their descendants are removed from the tree by
REDUCE�NEAR	 If a deleted leaf l� corresponds to an incoming edge of the vertex vi� it
forms a near pair with hv�l�i� so REDUCE�NEAR adds it to Gp	 Then REDUCE�NEAR
goes along the paths from Y� to the potential leaves of vertex vi applying a top�down
reduction	 There might be more than one potential leaf forming a near pair with hv�l�i	
The same is done with the path from Yk to the sequence indicator hv�l�i	 Since there may be
other near pairs in the frontier of Y� and Yk� they are reduced correspondingly	 Afterwards�
all ignored nodes between the outermost leaf that corresponds to an incoming edge of vi�
and hv�l�i are removed from the PQ�tree and the arrays PLX and SIX are updated	 If a
deleted leaf corresponds to an incoming edge of vi� then it is added to Gp	
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However� the algorithm REDUCE�NEAR is not correct for three reasons�

Problem �� Adding every incoming edge of a vertex vi that corresponds to some deleted
potential leaf might result in a nonplanar subgraph	 This is due to the fact that di�erent
potential leaves may be descendants of the same type U node� or descendants of di�erent
pertinent nodes	

Problem �� Reducing the near pairs top�down does not restrict the permissible permu�
tations in such a way that in all permutations l and hv�l�i form a consecutive sequence	

Problem �� Let l� hv�l�i be the �rst detected near pair in the frontier of Y�� Y�� � � � � Yk	
Let l�� hv�l��i be some other near pair in the frontier of the same nodes	 The near pairs
are reduced in the order they have been detected	 This implies reducing l� hv�l�i before
reducing l�� hv�l��i	 This is not correct since reducing l� hv�l�i �rst might cause the deletion
of l�� hv�l��i while the reduction of l�� hv�l��i might not cause the deletion of l� hv�l�i	 Hence
G� is not necessarily maximal planar	

So in order to correct REDUCE�NEAR� we are confronted with solving the following three
problems�

�	 If there are several potential leaves that form a near pair with hv�l�i� a maximal
subset of leaves has to be found� which guarantees that all leaves of the subset can
be reduced together	


	 A near pair l� hv�l�i has to be reduced� such that l and hv�l�i form a consecutive
sequence in all permissible permutations	

�	 If there are several near pairs� an ordering of the near pairs has to be found in such
a way that the reduction of one near pair does not hinder the reduction of the near
pairs which still have to be reduced	

The �rst two problems have been shown to be solvable by Leipert ������� but the last one
still remains unsolved	

����� Remarks

We showed that the attempt of Jayakumar et al� ������ to solve the maximal planar
subgraph problem with PQ�trees is not correct	 The problem is due to the fact that an
important invariant for planarity testing is ignored	 We have further shown that even
a �corrected� version of the algorithm applied in the best possible case� where the st�
numbering of a graph G is as well an st�numbering of the planar subgraph Gp� is not
correct	

Since this best case is a very rare case and since the modi�cations for the solved problems
�see Leipert ������� are far beyond any reasonable implementation� we doubt that a useful
algorithm based on the strategy presented by Jayakumar et al� ������ can be found	
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Level Planarity Testing

A criterion to obtain a good readability in the presentation of hierarchies and level graphs
is to produce diagrams with a limited number of crossings between the edges �see Batini�
Furlani� and Nardelli ������� Purchase� Cohen� and James ������ and Purchase �������	
However� the k�level crossing minimization problem� that is minimizing the number of
crossings for k�level graphs� has shown to be NP�hard by Garey and Johnson ������� even
if k � 
	 According to Eades� McKay� and Wormald ������ the problem remains NP�
hard if the vertices of one of the two levels are �xed in their positions	 Moreover� Tomii�
Kambayashi� and Shuzo ������ and Eades and Whitesides ������ proved that the problem
of deleting the minimum number of edges to obtain a 
�level planar graph is NP�hard	

Due to the NP�completeness of the problems a lot of e�ort was spent to the design of
ecient heuristics for reducing the number of crossings in drawings of 
�level graphs	 The
main idea of this approach was to use a �good� heuristic for the 
�level case and to perform
a �level by level sweep� on the general k�level case� trying to reduce the crossings between
consecutive levels	 Choosing an appropriate ordering of the �rst level� the ordering of every
level i is kept �x while reordering the level i� � in order to reduce crossings between level
i and i � �	 The process can be repeated in reverse direction to reduce crossings further	

Among others� War�eld ������ developed various heuristics for the general case	 The most
common heuristic has been presented by Sugiyama� Tagawa� and Toda ������	 It is called
the barycentric method and works on a 
�level graph with one level �xed	 The barycentric
method orders the vertices of the free level according to the barycenter �average� of the
x�coordinates of their neighbors in the �xed level	 The median heuristic presented by
Eades and Wormald ������ orders the vertices of the free level using the median of the x�
coordinates of the neighbors in the �xed level	 Various greedy heuristics have been presented
by Eades and Kelly ������	 The greedy switch heuristic passes over all consecutive pairs
of vertices and switches them if this decreases the number of crossings	 The greedy insert
heuristic proceeds by successively choosing the next vertex v to be the one that minimizes
the number of crossings that edges adjacent to v make with edges adjacent to vertices
inserted before v if v is put to the right of all yet placed vertices	 The split heuristic

��
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chooses a pivot vertex v� and places every other vertex to the left or right of v depending
on the smaller number of crossings that a placement produces	 More recent heuristics are
the stochastic heuristic by Dresbach ������ and the assignment heuristic by Catarci ������	
As reported by J�unger and Mutzel ������ the barycentric heuristic yields the best results
in terms of number of crossings and solution time	

Other approaches involve formulating the problem as an integer program and was �rst
employed by J�unger and Mutzel ������	 They show that the 
�level crossing minimization
problem with one level �xed may be transformed into a linear ordering problem which can
then be solved by a branch�and�cut algorithm� yielding exact solutions within reasonable
time	 The computational results of J�unger and Mutzel ������ lead to the conclusion that
there is no need for heuristics if one level is �xed	

For the general case of two variable levels� a tabu search approach was employed by Valls�
Marti� and Lino �����a�� and branch�and�bound approaches have been applied by Valls�
Marti� and Lino �����b�� and J�unger and Mutzel ������	 However� as has been stated by
J�unger and Mutzel ������� the true optimum usually can be computed only for sparse
instances with less than �� vertices on every level using the branch�and�bound approach	
A �rst approach to the multi�level crossing minimization problem based on branch�and�cut
has been reported by J�unger� Lee� Mutzel� and Odenthal �����a�� along with preliminary
computational results for 
� and ��level graphs	

An alternative method for crossing minimization on hierarchical graphs has been presented
by Mutzel ������	 Her method removes a minimum number of edges such that the resulting
graph is k�level planar	 For the �nal diagram the removed edges are reinserted into a
k�level planar drawing	 Hence� instead of considering the k�level crossing minimization
problem� the k�level planarization problem is considered	 In order to apply this strategy� it
is necessary to have an algorithm that computes a level planar embedding of a level planar
graph	 However� as Carpano ������ noticed� none of the planarity testing and embedding
algorithms can be used to construct a level planar embedding of a level graph� even if the
level graph is a hierarchy	

Algorithms for testing planarity of 
�level graphs are given by Harary and Schwenk ����
��
Tomii� Kambayashi� and Shuzo ������ and Eades� McKay� and Wormald ������	 However�
it is not possible in general to reduce the problem of level planarity testing of a k�level
graph G to the one of testing the level planarity of the �k	 �� 
�level graphs that compose
G	 Di Battista and Nardelli ������ developed a k�level planarity test for hierarchies using
the PQ�tree data structure of Booth and Lueker ������	 Di Battista and Nardelli ������
moreover gave a characterization of level planar hierarchies in terms of forbidden subgraphs	
Chandramouli and Diwan ������ gave an algorithm that can easily be transformed into a
level planarity testing and embedding algorithm for triconnected level graphs	

A level planarity test for the general case of level graphs has been presented by Heath and
Pemmaraju ������ ������ who apply the PQ�tree data structure� too	 However� it has been
shown by J�unger� Leipert� and Mutzel �����b� that this algorithm does not state correctly
level planarity of every level planar graph	
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This chapter presents a linear time algorithm for level planarity testing that is based on
three main new techniques that replace the incorrect crucial parts of the algorithm of Heath
and Pemmaraju ������ �����	 The �rst section of this chapter gives a characterization of
level planarity in terms of forbidden subgraphs� including recent results by Healy and
Kuusik ������	 The second section presents the level planarity test of Di Battista and
Nardelli ������ for hierarchies	 The correctness of this algorithm is needed in the correctness
proof of our level planarity test	 The next section then presents the approach of Heath and
Pemmaraju ������ ����� including the proof of the incorrectness of the algorithm	 In the
fourth section� a level planarity test is developed� employing two new strategies that replace
the incorrect parts of the algorithm of Heath and Pemmaraju ������ �����	 However� this
approach does not yield a linear time algorithm	 The Section �	� shows how to obtain an
O�n� time algorithm by applying a third new strategy to the level planarity test �see also
J�unger� Leipert� and Mutzel �����b��	

For simplicity� we assume for the rest of this chapter that all level graphs are proper	 In the
last section we show that our algorithm performs on nonproper graphs with no modi�cation
yielding a linear time algorithm for nonproper graphs as well	

��� Characterization of Level Planar Graphs

Due to the commonly used strategy of traversing level graphs top to bottom trying to
reduce crossings in consecutive levels� research has focused early on the examination of 
�
level graphs	 First characterizations of level planar graphs have been given by Harary and
Schwenk ����
�� Tomii� Kambayashi� and Shuzo ������ and Eades� McKay� and Wormald
������ for the special case of 
�level graphs	 The di�erence between a planar bipartite graph
and a 
�level planar graph should be obvious	 Consider the example shown in Fig	 �	� that
was taken from Mutzel ������	 It shows a planar bipartite graph that is not 
�level planar	
The graph of Fig	 �	
 is called a double claw 	

�a� Planar bi�
partite graph

�b� Nonlevel
planar graph

Figure �	�� A planar bipartite graph not being 
�level planar	

Theorem ��� Harary and Schwenk ������� A 
 level graph is 
�level planar if and
only if it contains no cycle and no double�claw�
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�b� Level embedded double
claw�

Figure �	
� A double claw	

In ����� Di Battista and Nardelli gave a characterization of level planar hierarchies	 They
identi�ed three patterns of nonlevel planar subgraphs	 To describe these patterns� we
introduce some more terminology� as described in Di Battista and Nardelli ������	 Let
G � �V�E� be a k�level hierarchy	 Then LACE�i� j�� � � i � j � k� denotes the set of
paths P connecting any two vertices u � V i and v � V j such that P traverses only vertices
in V i � V i�� � � � � � V j	 If P� and P� are vertex disjoint paths belonging to LACE�i� j�
then a bridge is a path connecting vertices u � P� and v � P� traversing only vertices
in V i � V i�� � � � � � V j	 The following theorem gives a characterization of level planar
hierarchies	

Theorem ��� Di Battista and Nardelli ������� Let G � �V�E� be a k�level hierar�
chy� G is level planar if and only if there is no triple P�� P�� P� � LACE�i� j�� � � i � j � k�
that satis�es one of the following conditions�

�i� The paths P�� P�� and P� are pairwise vertex disjoint and pairwise connected by
bridges� The bridges do not share vertices with P�� P�� and P� except for the endpoints�
See Fig� ����a� for an illustration�

�ii� The paths P� and P� precisely share an endpoint u and a path Pu �possibly empty�
starting from u� and P� � P� � P� � P� � �� Furthermore� there exist a bridge b�
between P� and P� and a bridge b� between P� and P� with b� �P� � b� �P� � �� See
Fig� ����b� for an illustration�

�iii� The paths P� and P� precisely share an endpoint u� and a path Pu� �possibly empty�
starting from u�� Furthermore� the paths P� and P� precisely share an endpoint u��
with u� �� u�� and a path Pu� �possibly empty� starting from u�� and P� and P� are
connected by a bridge b� with b � P� � �� See Fig� ����c� for an illustration�

Very recently Healy and Kuusik ������ have shown that the forbidden patterns as described
in Theorem �	
 yield a characterization of level graphs in general	
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Figure �	�� Illustration for Theorem �	
� taken from Di Battista and
Nardelli ������	

Theorem ��� Healy and Kuusik ������� Let G � �V�E� be a k�level graph� Then
G is level planar if and only if there is no triple of paths that satis�es the conditions from
Theorem ��
�

Moreover� Healy and Kuusik ������ give a characterization of level planar graphs in terms
of minimal nonlevel planar subgraph patterns �MNLP�patterns�	 Such a MNLP�pattern is
de�ned to have the property that the removal of any edge in the pattern makes the pattern
level embeddable without edge crossings	 Healy and Kuusik characterize MNLP�pattern
as trees� nonlevel planar cycles� or as level planar cycles with certain path augmentations	
Since the results are not needed in this work and are rather complex� we refrain from citing
them	

��� Level Planarity Testing of Hierarchies

This section gives a brief introduction to the level planarity test of Di Battista and Nardelli
������ for hierarchies	 In order to test whether a level graph G � �V�E� is level planar� it
is sucient to �nd an ordering �j of the vertices of every set V j� � � j � k� such that for
every pair of edges �u�� v��� �u�� v�� � E with u�� u� � V j and u� �j u�� we have v� �j�� v�	
Let Gj denote the subgraph of G induced by V ��V ��� � ��V j	 The strategy of Di Battista
and Nardelli ������ for testing the level planarity of hierarchies is to perform a top�down
sweep� processing the levels in the order V �� V �� � � � � V k and computing for every level V j�
� � j � k� the set of permutations of the vertices of V j that appear in some level planar
embedding of Gj	 Obviously� the graph G � Gk is level planar if and only if the set of
permutations for Gk is not empty	

Since a hierarchy has only one single source� testing for level planarity can be done eciently
using the PQ�tree data structure� similar to the approach of Booth and Lueker ������ for
testing planarity of general �undirected� graphs	 Let s � V denote the only source of G	
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The following algorithm LPTH �Level Planar Test for Hierarchies� basically is the one
given by Di Battista and Nardelli ������	

Boolean LPTH�G � �V �� V �� � � � � V k�E��

begin
construct the universal PQ�tree T for s and its outgoing edges�
for j � 
 to k do

for every vertex v � V j do
Sv �� f�w� v� j �w� v� � E�w � V j��g�
if REDUCE�T� Sv� � � then

return �false��
�Sv �� f�v� w� j �v� w� � E�w � V j��g�
if j �Svj 
 � then

REPLACE�Sv � �Sv��
else

remove pertinent subtree with respect to Sv from T �
return �true��

end	

The algorithm as it was originally presented in Di Battista and Nardelli ������ does not
perform a reduction with respect to all leaves in Sv in one step	 The authors partition
the set of incoming edges of a vertex v into three subsets and reduce these subsets rather
than reducing the complete set of incoming edges	 This is more complicated� but it allows
Di Battista and Nardelli to prove Theorem �	
 taking advantage of the correctness of the
algorithm	 However� a close examination of their method reveals that reducing all leaves
of Sv at once constructs the same PQ�tree	

An embedding of the hierarchy is computed by �rst choosing any spanning tree TG of G
rooted at the source s of G� and keeping an �ignored� leaf for every leaf of TG in the PQ�
tree	 The ignored leaves are ignored in subsequent applications of the template matching
algorithm and are needed to determine the relative position of the leaves of TG in the
corresponding levels	 Using an arbitrary permutation of the �nal PQ�tree� including all
ignored leaves� a depth �rst search is performed starting at the root s of the spanning tree
TG in order to compute the �nal embedding	 The following theorem states the main result
of Di Battista and Nardelli ������	

Theorem ��� Di Battista and Nardelli ������� There exists a linear time algo�
rithm to test whether a proper hierarchy is level planar� and if so� it outputs a level planar
embedding�

Let G be a level planar graph� and let Hj� � � j � k� be the graph constructed from Gj

by adding for every outgoing edge of V j a virtual edge and a virtual vertex� where every
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virtual vertex is labeled by its counterpart in the original graph G	 Clearly� we are able to
identify every level planar embedding of Hj with a PQ�tree T by

 replacing every cut vertex by a P �node�

 replacing every biconnected component by a Q�node�

 replacing every virtual vertex by a leaf� and

 rooting T at the node corresponding to the biconnected component or cut vertex
that contains the source s	

According to the algorithm presented Di Battista and Nardelli ������ the following lemma
can be obtained for hierarchies	

Lemma ��	 Di Battista and Nardelli ������� Let G � �V�E� be a level planar hi�
erarchy with k levels� Let Gj and Hj� � � j � k� be de�ned as above� Let Bj be some
level planar embedding of Hj� Then there exists a sequence of permutations of components
around cut vertices and reversions of biconnected components such that for every v � V j���
the virtual vertices labeled v occupy consecutive positions on the horizontal line j��� More�
over� for every level planar embedding of Hj the set of permutations of virtual vertices in
which for all v � V j�� the virtual vertices corresponding to v occupy consecutive positions
can be represented by a PQ�tree�

We will need this lemma later in the inductive proof on the correctness of our level planarity
test	

��� Level Planarity Testing by Heath and Pemmaraju

This section deals with the approach of Heath and Pemmaraju ������ ����� for testing
general level graphs for level planarity	 As in the approach of Di Battista and Nardelli
������ for hierarchies the basic idea is to perform a top�down sweep� processing the levels
in the order V �� V �� � � � � V k	 Since the graph Gj� � � j � k� is not necessarily connected� a
separate PQ�tree is introduced for every component ofGj and standard PQ�tree techniques
are applied� as long as di�erent components of Gj are not adjacent to a common vertex on
level j��	 If two components are adjacent to a common vertex v on level j��� they have to
be merged and a new PQ�tree has to be constructed from the two corresponding PQ�trees	
The new PQ�tree then represents all level planar embeddings of the merged component	
Applying a combination of reduce operations and merge operations for combining PQ�
trees� Heath and Pemmaraju try to maintain for every level V j and for every component
F of Gj the set of permutations of the vertices of F in V j that appear in some level planar
embedding of Gj	 If the set of permutations for Gk is not empty� the graph G � Gk is
obviously level planar	 This section gives a complete introduction to the approach of Heath
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and Pemmaraju ������ ������ including a complete description of the merge operations	 The
section is �nished by showing the incorrectness of the approach of Heath and Pemmaraju
������ �����	

Since a level graph is level planar if all its components are level planar� we assume with�
out loss of generality that G is connected	 As long as the graph Gj is connected for some
j � f�� 
� � � � � kg standard PQ�tree techniques similar to the ones used in the level planarity
test for hierarchies in Section �	
 can be applied for determining the required set of permu�
tations	 Unlike G� Gj is not necessarily connected	 A permutation induced by an ordering
�j on the vertices of V j is called a witness of Gj if the permutation appears in some level
planar embedding of Gj	 In case that Gj� � � j � k� consists of more than one connected
component� Heath and Pemmaraju suggest to use a PQ�tree for every component and
formulate a set of rules for merging PQ�trees T� and T� corresponding to components F�

and F� if F� and F� both are adjacent to some vertex v � V j��	

The authors �rst reduce the pertinent leaves of T� and T� with respect to the vertex
v	 After successfully performing these reductions� the consecutive sequences of pertinent
leaves labeled v are replaced by single pertinent representatives in both T� and T�	 Going
up one of the trees� say T�� from its pertinent representative� an appropriate position is
searched� allowing the tree T� to be placed into T�	 After successfully performing this step�
the resulting tree T � has two pertinent leaves labeled v that again are reduced	 If any of the
steps fails� Heath and Pemmaraju state that the graph G is not level planar	 The following
code fragment shows a function HP�TEST by Heath and Pemmaraju ������ ����� that
transforms the subgraph Gj into Gj��� thereby testing for level planarity	

The function needs as input the set of PQ�trees T �Gj�� where each PQ�Tree T � T �Gj�
is associated with a component F of Gj� and represents all possible permutations of the
level�j vertices of F in level planar embeddings of F 	 The function returns after successful
termination the set T �Gj��� representing all possible permutations of V j�� in level planar
embeddings of the components of Gj��	 By a �justi�ed� abuse of notations� we will usually
talk about �all level planar embeddings of the components ofGj��� rather than �all possible
permutations of V j�� in level planar embeddings of the components of Gj���	 The function
MERGE used by HP�TEST will be described in �	�	�	

T �Gj��� HP�TESTT �Gj��

begin
for every vertex v � V j do

�Sv �� f�v� w� j �v� w� � E�w � V j��g�
if j �Svj 
 � then

REPLACE�Sv � �Sv��
else

remove Sv from the corresponding PQ�tree T �
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First Merge Phase
for every vertex v � V j�� do

for every PQ�tree T do
Sv
T �� leaves in T labeled v�

if REDUCE�T� Sv
T � � � then

return ��
else

let vT be a single representative of Sv
T �

REPLACE�Sv
T � fvTg��

Second Merge Phase
for every pair T�� T� of PQ�trees in T �Gj� do

let U �� fv j v � frontier�T�� � frontier�T��g�
if U �� � then

let v � U be an arbitrary vertex�
let T � �� MERGE�T��T��v��
let Sv

T � be the set of leaves labeled v in T ��
if REDUCE�T �� Sv

T �� � � then
return ��

else
let v�T be a single representative of Sv

T � �
REPLACE�Sv

T � � fv�Tg��
U �� U 	 fvg�
while U �� � do

let v � U be an arbitrary vertex�
let Sv

T � be the set of leaves labeled v in T ��
if REDUCE�T �� Sv

T �� � � then
return ��

else
let v�T a single representative of Sv

T ��
REPLACE�Sv

T � � fv�Tg��
U �� U 	 fvg�

end	

There are some interesting details to be noticed on the approach of Heath and Pemmaraju
������ �����	 In the code fragment of HP�TEST we make use of the function REDUCE
as it has been presented in Section �	�	 Heath and Pemmaraju do not explicitly use the
template matching algorithm of Booth and Lueker ������	 They simply �reinvent� the
template matching algorithm by developing their own templates and renaming the func�
tion REDUCE to ISOLATE	 The templates that are used in the function ISOLATE only
perform on sets of size two	 A close examination immediately reveals that the templates
developed by Heath and Pemmaraju are exactly the templates of Booth and Lueker for
pertinent sets of size two	 However� if three or more pertinent leaves exist in a PQ�tree T �
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it is not possible in general to reduce all leaves by applying an arbitrary sequence of pair�
wise reductions even if the complete set of all pertinent leaves is reducible	 In Heath and
Pemmaraju ������ this error is noticed	 Nevertheless� the authors still suggest to reduce
the pertinent leaves pairwise� but to apply a certain order by choosing pairs of pertinent
leaves	 Given a permutation 	 � PERM�T � where the pertinent leaves occupy consecutive
positions� the leaves are reduced pairwise according to this given order	 However� Heath
and Pemmaraju ������ do not describe how the permutation 	 is obtained	 The only known
strategy to get a valid permutation is to reduce the PQ�tree with respect to all pertinent
leaves and to read the frontier of the pertinent subtree from left to right	 But once all per�
tinent leaves have been reduced it is unnecessary to reduce the pertinent leaves pairwise
in the same order	

During the second merge phase� the PQ�trees are merged pairwise in an arbitrary order	
It will be shown later in this section that this reveals a source of errors	 Furthermore�
Heath and Pemmaraju claim linear running time for their level planarity test	 Considering
the presented strategy in the second merge phase it is not clear how linear running time
is obtained	 Obviously� leaves need to know to which PQ�tree they belong to	 Thus the
merge operations involve update operations and Heath and Pemmaraju do not discuss how
to obtain linear running time with respect to these operations	

����� Merge Operations

Merging two PQ�trees T� and T� at leaves labeled v as required by the function MERGE
corresponds to merging two components F� and F�	 Usually� it is not sucient to merge
F� and F� by simply placing them next to each other� identifying the virtual vertices with
the same label	 In general one component� say F�� needs to be nested within the other
component	 Fig	 �	� shows a simple example where the smaller component F�� drawn with
shaded vertices� has to be placed into F� for merging both components at their vertices
labeled v	

c�

c�

w�w�w� vv
�




�

Figure �	�� Nesting the smaller component F� with shaded vertices into
the larger component F�	

However� for merging F� and F�� it is necessary to know how much �space� in F� is
available between the vertex v and its neighbors in every level planar embedding of F�	 In
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the example �	� possible neighbors of v in F� are w� on the left side and w� or w� on the
right side �w� can be easily placed next to v without causing an edge crossing�	 The space
between w� and v is obviously too small to nest F� between w� and v	 There exists a cut
vertex c� on level 
 and a path p from w� to v using c� such that for every vertex u on the
path we have lev�u� 
 
	 Since F� has one vertex on level 
� a placement of F� between w�

and v creates crossings	 If F� is placed between v and fw�� w�g� no two edges cross each
other since any path connecting v and a vertex of fw�� w�g must traverse the cut vertex c�
on level �	

Heath and Pemmaraju ������ ����� formalize this observation as follows	 For any subset
S of the set of vertices in V j that belong to a component F of Gj� we de�ne ML�S� to
be the greatest d � j such that V d � V d�� � � � � � V j induces a subgraph of G in which
all nodes of S occur in the same connected component	 The level ML�S� is said to be the
meet level of S	 If a subset S � V j is not contained in a component of Gj� set ML�S� � �	
Obviously we have that ML�S� 
 �� if S induces a connected subgraph	 Figure �	� shows
an example of a graph G� having two components	 We have listed di�erent subsets of the
vertices V � � fv�� v�� � � � � v�g and their ML�values	

 ML�fv�� v�� v�� v�g� � ML�fv�� v�g� � ��

 ML�fv	� v
g� � ��

 ML�fv	� v
� v�g� � ��

 ML�fv�� v	g� � ��

v�v
v	v�v�v�v�v�

�

�

�




�

Figure �	�� A G� with two components	

Since the level planarity test performs on PQ�trees instead on the components of Gj� we
need to show how to maintain ML�values in a PQ�tree	 Let Y be a Q�node in a PQ�tree
TF corresponding to a component F of Gj and let Y�� Y�� � � � � Yt be the sequence of children
of Y 	 At node Y we maintain integers denoted by ML�Yi� Yi���� where � � i � t� satisfying



�� Chapter �� Level Planarity Testing

ML�Yi� Yi��� � ML�frontier�Yi� � frontier�Yi����	 At a P �node X in T �F � we maintain
a single integer ML�X� that satis�es ML�X� � ML�frontier�X��	 Figure �	� shows the
PQ�trees corresponding to the graph G� of Fig	 �	� together with the ML�values that are
stored at the nodes	

v�v�

�

v�v� v�

v�

v
v	

�
� � �

�

Figure �	�� PQ�trees corresponding to G� shown in �	�	

Furthermore� de�ne LL�F �� the low indexed level � to be the smallest d such that F contains
a vertex in V d and maintain this integer at the root of the corresponding PQ�tree T �
denoting it by LL�T � �thus� LL�F � equals LL�T ��	 The height of F is j 	 LL�F �	 The
LL�value merely describes the size of the component	 The LL�value of the left component
in example �	� is � and the LL�value of the right component is 
	 The maintenance of the
ML�values during the template matching algorithm is straightforward	

Using these LL� and ML�values� Heath and Pemmaraju ������ ����� describe a set of rules
how to connect two PQ�trees� claiming that the leaves of the new tree T � having the same
label are reducible if and only if the �merged� component F � is level planar	

Proposition ��
 Heath and Pemmaraju ���	� ���
��� Suppose that X is the least
common ancestor of a pair of leaves v and w in a PQ�tree in T �Gj�� If X is a P �node�
then

ML�fv� wg� � ML�X� �

Proposition ��� Heath and Pemmaraju ���	� ���
��� Suppose that X is the least
common ancestor of a pair of leaves v and w in a PQ�tree in T �Gj�� Suppose further
that X is a Q�node with ordered children X�� X�� � � � � Xt such that v � frontier�Xp� and
w � frontier�Xq�� where � � p � q � t� Then

ML�fv� wg� � minfML�Xi� Xi��� j p � i � qg �

The next proposition of Heath and Pemmaraju ������ formally states the fact that as
we follow a path in a PQ�tree from a leaf to the root� the encountered ML�values are
nonincreasing	

Proposition ��� Heath and Pemmaraju ���	� ���
��� Suppose that node X is the
parent of an internal node Y in a PQ�tree� De�ne x as follows�

x �

�
ML�X� if X is a P �node�
maxfML�Y� Z� j Z is a child of X adjacent to Y g if X is a Q�node�
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De�ne y as follows�

y �

��
�

ML�Y � if Y is a P �node�
minfML�Yi� Yi��� j � � i � tg if Y is a Q�node with ordered

children Y�� Y�� � � � � Yt�

Then x � y holds�

A detailed description of the merge operations of Heath and Pemmaraju ������ ����� is
now given	 Let G � �V�E� be a k�level graph and F� and F� be two components of Gj�
� � j � k� both being adjacent to the same vertex v � V j��	 Let T� and T� be the PQ�
trees of F� and F�� both representing all level planar embeddings of their corresponding
components after the application of the �rst merge phase for the level j��	 Identifying the
vertices labeled v of the components F� and F� constructs a new component F 	 For this
new component F a new PQ�tree T is needed that represents all level planar embeddings
of F 	 Heath and Pemmaraju now formulate a set of rules of how to construct the PQ�tree
T using the two existing ones T� and T�	

Without loss of generality� we may assume that LL�T�� � LL�T��	 Thus component F� is
the smaller component and an embedding of F� has to be found such that F� can be nested
within the embedding of F�	 This corresponds to adding the root of T� as a child to a node
of the PQ�tree T� constructing a new PQ�tree T �	 In order to �nd an appropriate location
to insert T� into T�� we start with the leaf labeled v in T� and proceed upwards in T� until
a node X � and its parent X are encountered satisfying one of the following �ve conditions	

Merge Condition A

The node X is a P �node with ML�X� � LL�T��	 Attach T� as child of X in T�	 Figure �	�
illustrates the merge operation A	

v

T�

T�

v

X �

X

�a� ML�X� � LL�T���

v

v

T�

X �

X

�b�

Figure �	�� Illustration for merge operation A	



�� Chapter �� Level Planarity Testing

Merge Condition B

The nodeX is a Q�node with ordered childrenX�� X�� � � � � Xt�X
� � X�� and ML�X�� X�� �

LL�T��	 Replace X
� in T� by a Q�node Y having two children� X � and the root of T�	 The

case where X � � Xt and ML�Xt��� Xt� � LL�T�� is symmetric	 Figure �	� illustrates the
merge operation B for the case of X � � X�	

v

T�

v

T�

X �

X

X� Xt

�a� ML�X �� X�� � LL�T�� �

v
v

T�

X

X� Xt
X �

Y

�b�

Figure �	�� Illustration for merge operation B	

Although the ML�value ofX � and T� is � �since they are not connected�� we set for technical
purposes ML�X �� T�� �� ML�X �� X��	 This is legal� since the two leaves labeled v in the
frontier of X � and T� are reduced after applying the merge operation and replaced by a
single representative which removes the value ML�X �� T�� from the tree	 We will see later�
how we bene�t from this value	

Merge Condition C

The node X is a Q�node with ordered children X�� X�� � � � � Xt� X
� � Xi� � � i � t� and

ML�Xi��� Xi� � LL�T�� and ML�Xi� Xi��� � LL�T��	 Replace X � by a Q�node Y with
two children� X � and the root of T�� and set �for technical purposes again� ML�X �� T�� ��
maxfML�Xi��� X

���ML�X �� Xi���g	 Figure �	� illustrates the merge operation C	

Merge Condition D

The node X is a Q�node with ordered children X�� X�� � � � � Xt� X
� � Xi� � � i � t� and

ML�Xi��� Xi� � LL�T�� � ML�Xi� Xi��� �

Attach the root of T� as child of X between Xi�� and X �� and set �for technical purposes�
ML�Xi��� T�� �� ML�Xi��� X

�� and ML�T�� X
�� �� ML�Xi��� X

��	
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X �

v

T�

v

X

Xi��X�

T�

Xi�� Xt

�a� ML�Xi��� X
�� � LL�T�� and ML�X �� Xi��� � LL�T���

v

X �

v

Y

X

T�

X� Xi�� Xi�� Xt

�b�

Figure �	�� Illustration for merge operation C	

In case that

ML�Xi� Xi��� � LL�T�� � ML�Xi��� Xi� �

attach the root of T� as child of X between X � and Xi�� and set the ML�values corre�
spondingly	 Figure �	�� illustrates the merge operation D for the case of ML�Xi��� Xi� �
LL�T�� � ML�Xi� Xi���	

Merge Condition E

The node X � is the root of T�	 Reconstruct T� by inserting a Q�node Y as new root of T�
with two children X � and the root of T� and set ML�X �� T�� �� �	 Figure �	�� illustrates
the merge operation E	

The merge operations for the conditions B and C both take care of the fact that the sub�
graph corresponding to T� can be embedded on either side of the subgraph corresponding
to X � with respect to the subgraph X	 By construction� Heath and Pemmaraju ������
make the following observations on the merge rules A� B� � � � � E	
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X �

v

T�

v

X

Xi��X�

T�

Xi�� Xt

�a� ML�Xi��� X
�� � LL�T�� �ML�X �� Xi��� �

v

X �

v

X

X� Xi��

T�

Xi�� Xt

�b�

Figure �	��� Illustration for merge operation D	

Observation ��� Heath and Pemmaraju ���
��� Let 	� � PERM�T�� be a per�
mutation of the leaves of T�� such that frontier�X �� is adjacent to a leaf labeled w� and
ML�frontier�X �� � fwg� � LL�T��� For any 	� � PERM�T��� there exists a permutation
	 � PERM�T �� with T � being the new PQ�tree that is consistent with 	� and 	� and in
which the frontier�T�� occurs immediately after frontier�X �� and immediately before w�

Observation ���� Heath and Pemmaraju ���
��� Let 	� � PERM�T�� be a per�
mutation such that the leaves of frontier�X �� appear at the end of 	�� Let 	� � PERM�T��
be an arbitrary permutation of the leaves of T�� Then there exists a permutation 	 �
PERM�T �� that is consistent with 	� and 	� and in which the leaves in frontier�T�� occur
immediately after frontier�X ���

����� On the Incorrectness of the Algorithm

Heath and Pemmaraju apply a two phase algorithm in order to construct a set of PQ�trees
that represents the set of all level planar embeddings of the components of the subgraph
Gj��	 During the �rst merge phase� their algorithm reduces for every PQ�tree all sets of
leaves corresponding to the same vertex	 Suppose� T� and T� correspond to components
F� and F� of Gj and both components are adjacent to some vertex v � V j��	 Then the
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T�

v

X �

v

T�

�a� X � is root of T��

v

X �

v

Y
T�

�b�

Figure �	��� Illustration for merge operation E	

set of all leaves labeled v in T� as well as in T� is reduced	 Furthermore� these sets are
replaced in T� as well as in T� by a single leaf labeled v	 In the second merge phase� the
algorithm merges di�erent PQ�trees corresponding to components that are adjacent to the
same vertex	 Thus� T� and T� are merged� each of the trees having only one pertinent leaf
labeled v	

vvu w

�a� F�

v v v

�b� F�

Figure �	�
� Two components both adjacent to a vertex v	

Now let F� � �V�� E�� be a component� such that the number of vertices in V� being
adjacent to some vertex v � V j�� is at least 
 and F� is also adjacent to at least two other
vertices of V j��	 Let F� � �V�� E�� be a component such that F� is adjacent to v � V j��

and not adjacent to any other vertex in V j�� and let the following inequality hold�

LL�F�� � LL�F�� �

Assume further that in all possible level planar embeddings of F�� there is a vertex u on
the left and a vertex w and on the right side of the virtual vertices labeled v such that the
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following inequality holds�

ML�u� v� � LL�T�� and ML�v� w� � LL�T�� �

As an example� see Fig	 �	�
� where the height of the two components in the drawing
indicates their LL�values	 Assume further� that there is enough space between two vertices
labeled v of F� such that F� can be nested inside F� constructing a level planar embedding
of F� and F� with the vertices labeled v identi�ed as indicated in Fig	 �	��	

vu w

Figure �	��� Only possible level planar embedding of the two components	

According to Heath and Pemmaraju ������ ������ the leaves corresponding to v are reduced
in both PQ�trees T� and T� and the pertinent subtree is replaced by a single leaf	 But this
replacement corresponds to the creation of interior faces in both F� and F�	 By constructing
interior faces� the information about the space� where F� can be nested into F� gets lost
as is indicated in Fig	 �	��	

u vw

�

Figure �	��� The situation caused by the �rst merge phase	

So the algorithm will fail when trying to place the tree T� next to the single leaf v in T��
constructing a PQ�tree T � where in all possible permutations one of the leaves labeled u
or w is between the leaf labeled v of T� and the leaf labeled v of T�	 The reduction T � with
respect to the vertices labeled v then fails� and the algorithm states incorrectly that the
level planar graph is not level planar	
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Within the second merge phase� components are merged in an arbitrary order	 We show
that choosing an arbitrary order may result in PQ�trees that are not reducible with respect
to a vertex v �although the graph is level planar�	 Consider four di�erent components
F�� F�� F�� F� and their corresponding PQ�trees T�� T�� T�� T� each having a pertinent leaf
corresponding to some level��j � �� vertex v	 For simplicity we assume that for every
component the leaf labeled v appears in all permutations at one end of the PQ�tree	
Assume further that the smallest common ancestor of a leaf labeled v and any other leaf
adjacent to it is a Q�node	 Figure �	�� shows such a component Fi and its corresponding
PQ�tree Ti	 The number li � ML�fwi

pi
� vg� is the ML�value between the pertinent leaf

labeled v and the frontier of its left neighbor	

��
��
��
��
��
��
��
��

�
�
�
�

��

�
�
�
�

��

LL�Fi�

j

j 	 �

v

li

li

wi
� wi

pi

wi
� wi

pi
v

Figure �	��� Component Fi and its corresponding PQ�tree Ti	

Assuming that the condition

LL�F�� � l� � LL�F�� � l� � LL�F�� � l� � LL�F�� � l�

on the ML� and LL�values of the components holds� it is possible to merge all four com�
ponents into one component such that the pertinent leaves form a consecutive sequence	
Figure �	�� shows the four components� indicating how the components can be merged
constructing a level planar embedding	

Consider the following merge operations on the components F�� F�� F�� F� and their corre�
sponding PQ�trees�

�	 merge F� and F� into component F ��


	 merge F � and F� into component F ���

�	 merge F �� and F� into component F ���	

The resulting PQ�tree T ��� corresponding to F ��� is shown in Figure �	��	 The pertinent
leaves labeled v do not form a consecutive sequence in any permissible permutation of the
PQ�tree T ���	 Hence the algorithm presented by Heath and Pemmaraju ������ ����� states
nonlevel planarity for certain level planar graphs	

Obviously� the order of merging the components is important for testing a level graph for
level planarity	 Moreover� it is easy to see� that using di�erent orderings while merging three
or more components results in di�erent equivalence classes of PQ�trees	 So even if every
order of merging PQ�trees with pertinent leaves results in a reducible PQ�tree� a PQ�tree
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Figure �	��� Possible level planar arrangement of the components
F�� F�� F�� F�	
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l� l�

Figure �	��� PQ�tree T ��� whose pertinent leaves labeled v are not re�
ducible	 The vertex v� denotes the single representative of the the leaves
labeled v corresponding to the components F�� F� and F�	

may be constructed such that the leaves corresponding to some vertex w� lev�w� � j � ��
are not reducible� although the graph G is level planar	 Again� the algorithm presented by
Heath and Pemmaraju ������ ����� may state incorrectly the nonlevel planarity of a level
planar graph	

��� Introduction to a Correct Level Planarity Test

In this section we introduce new strategies for obtaining a correct algorithm that tests a
level graph G � �V �� V �� � � � � V k�E� for level planarity	 Before we describe our algorithm�
called LEVEL�PLANARITY�TEST� let us recall some old and introduce some new termi�
nology	 Since Gj is not necessarily connected� let mj denote the number of components of
Gj and let F j

i � i � �� 
� � � � � mj� denote the components of Gj	 Figure �	�� shows a G� with
m� � 
 components F �

� and F �
� 	 The set of vertices in F j

i is denoted by V �F j
i �	
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F �
�F �

�

�

�




�

Figure �	��� A G� with m� � 
 components F �
� and F �

� 	

Let Hj
i be the graph arising from F j

i as follows� For each edge e � �u� v�� where u is a
vertex in F j

i and v � V j�� we introduce a virtual vertex with label v and a virtual edge that
connects u and this virtual vertex	 Thus there may be several virtual vertices with the same
label� adjacent to di�erent components of Gj and each with exactly one entering edge	 The
form Hj

i is called the extended form of F j
i and the set of virtual vertices of Hj

i is denoted
by frontier�Hj

i �	 Figure �	�� shows possible extended forms H�
� and H�

� of the example in
Fig	 �	��	 The virtual vertices on level � are denoted by their labels	 The frontier or H�

�

consists of one virtual vertex labeled u� two vertices labeled v� and two vertices labeled w	

H�
�H�

�

xx vuvvww
�

�

�




�

Figure �	��� Two possible extended forms H�
� and H�

� of �	��	

Let Bj
i be a level planar embedding of Hj

i 	 Obviously� all virtual vertices of Hj
i are placed

on the same horizontal line on the outer face	 As in the planarity test of Lempel et al�
������� Bj

i is called a bush form of Hj
i 	 The set of virtual vertices of Hj

i that are labeled
v � V j�� is denoted by Sv

i 	 Figure �	
� shows the sets Sw
� � S

v
� � and Su

� � the set of virtual
vertices labeled w�v and u of H�

� � respectively	 The set Sx
� is empty	
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Figure �	
�� Sets Sw
� � S

v
� � and Su

� of H�
� 	

For two di�erent nonempty sets Sv
i and Sv

l we denote the graph resulting by identifying
the vertices Sv

i � Sv
l by Hj

i �v H
j
l 	

The graph that is created from an extended form Hj
i by identifying all virtual vertices

with the same label to a single vertex is called reduced extended form and denoted by Rj
i 	

Figure �	
� shows the reduced extended forms R�
� and R

�
� of H

�
� and H�

� 	 In R
�
� the vertices

labeled w have been identi�ed and the vertices labeled v have been identi�ed	 In order to
identify the two vertices labeled x in R�

�� it was necessary to permute the left most vertex
labeled x and v	 Both forms R�

� and R�
� now have exactly one vertex labeled v	

R�
�R�

�

xvw uv
�

�

�




�

Figure �	
�� Extended forms R�
� and R�

� of H�
� and H�

� 	

The set of virtual vertices of Rj
i is denoted by frontier�Rj

i �	 If S
v
i of Hj

i is not empty� we
denote the vertex with label v of Rj

i �i	e	� the vertex that arose from identifying all virtual
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vertices of Sv
i � by vi and update Sv

i � fvig	 The graph arising from the identi�cation of two
virtual vertices vi and vl �labeled v� of two reduced extended forms Rj

i and Rj
l is denoted

Rj
i �vR

j
l 	 We call Rj

i �vR
j
l a merged reduced form	 The vertex arising from the identi�cation

of vi and vl is denoted by vfi�lg �and labeled by v of course�	 If LL�Rj
i � � LL�Rj

l � we say R
j
l

is v�merged into Rj
i 	 The form that is created by v�merging Rj

l into R
j
i and identifying all

virtual vertices with the same label w �� v is again a reduced extended form and denoted
by Rj

i �thus renaming Rj
i �v R

j
l with the name of the �higher� form�	 Figure �	

 shows

the resulting merged reduced extended form R�
� �vR

�
� after R

�
� �the smaller form� has been

v�merged into R�
� �the higher form�	 Since R�

� is the higher form� R�
� �v R

�
� is renamed into

R�
�	

v uxw
�

�

�




�

Figure �	

� Merged reduced extended form R�
� �v R

�
� after R�

� has been
v�merged into R�

�	 The former vertices of R�
� are drawn shaded	

If some reduced extended form has been v�merged into Rj
i � the form Rj

i is called v�
connected � otherwise Rj

i is called v�unconnected 	 Thus� R�
� shown in Fig	 �	
� is v�

unconnected� R�
� shown in Fig	 �	

 is v�connected	

A reduced extended form Rj
i that is v�unconnected for all v � V j�� is called primary 	 A

reduced extended form Rj
i that is v�connected for at least one v � V j�� is called secondary 	

Again� R�
� shown in Fig	 �	
� is primary� R�

� shown in Fig	 �	

 is secondary	

Let Rj
i be a reduced extended form such that Sv

i �� � for some v � V j�� and Sw
i � � for

all w � V j�� 	 fvg� then Rj
i is called v�singular 	 Figure �	
� shows a v�singular form	

In case that Hj
i is a hierarchy� we know from Lemma �	� that the set of level planar

embeddings of Hj
i can be represented by the equivalence class of a PQ�tree	 Figure �	
�

shows an example of an extended form Hj
i and its corresponding PQ�tree� representing all

permutations of the virtual vertices that appear in some level planar embedding of Hj
i 	

The form Hj
i has two virtual vertices labeled v	 Figure �	
� shows an example of a reduced

extended form Rj
i and its corresponding PQ�tree	 The form Rj

i has been constructed from
the extended form Hj

i shown in Fig	 �	
� by identifying the two virtual vertices labeled
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�

�

�




�

v

Figure �	
�� A v�singular form	

v	 The corresponding PQ�tree has been constructed by reducing the two leaves labeled v
applying the pattern matching algorithm of Booth and Lueker ������� and replacing the
pertinent subtree by a single representative	

vv w

v v xuw

j 	 


j 	 �

j

j � �

xu

Figure �	
�� An extended form Hj
i and its PQ�tree	

w uv x

w v

j 	 


j 	 �

j

u xj � �

Figure �	
�� The corresponding reduced extended form Rj
i and its PQ�tree	

Let T �Gj�� be the set of level planar embeddings of all components of Gj	 We will show
that in case that Gj is level planar� the set of permutations of level�j vertices in level planar
embeddings of each component F j

i of Gj can be described by a PQ�tree Ti	 Clearly this
is true� if every F j

i is a hierarchy	 Hence it remains to be shown that it is also possible to
maintain a PQ�tree for every component F j

i that is not a hierarchy	 Two problems have
to be solved in order to get this result	
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�i� Singular forms need to be treated correctly	

�ii� An ordering has to be found that merges several forms correctly at the same vertex	

Once a solution has been found for the problem of �nding a correct ordering� it seems to
be straightforward to handle singular forms correctly	 It looks like a good approach not to
replace the set of pertinent leaves in every PQ�tree by a single representative	 This keeps
the pertinent leaves and all the information stored in the ML�values of the pertinent nodes
in the PQ�tree� and seems to avoid the problem of not being able to place singular forms
into interior faces	

Yv�v�X

�a� T j
i

Z v�v�

�b� T j
l

Figure �	
�� PQ�trees T j
i and T j

l 	

Unfortunately� this does not work	 Consider for instance two di�erent PQ�trees T j
i � and

T j
l corresponding to two extended forms Hj

i � and Hj
l both having some virtual vertices

labeled v	 Assume that v� and v� are the virtual vertices labeled v of Hj
i � and v� and v� are

the virtual vertices labeled v of Hj
l 	 Assume further that LL�T j

i � � LL�T j
l � and the trees

have shapes as indicated in Fig	 �	
�	

Obviously� the leaves v� and v� are between the subtrees X and Y in all permissible
permutations of tree T j

i 	 The leaves v� and v� are on one side of the subtree Z in all
permutations of T j

l 	 Assume now that the following inequalities hold�

ML�X� v�� � LL�T j
l �

and

ML�Y� v�� � LL�T j
l � �

These inequalities imply that there is enough space to nest the smaller tree T j
l on either

side of the pertinent sequence v�� v� within the larger tree T j
i 	 This implies that the subtree

Z must be either between X and the pertinent sequence with respect to v or between Y
and the pertinent sequence with respect to v in any level planar embedding of G	

As described in Section �	�� Heath and Pemmaraju proceed as follows�

�	 Replace the pertinent sequence v�� v� by a single representative vi and v�� v� by a
single representative vl	
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	 Replace vi by a new Q�node with children vi and the root of tree T j
l 	

�	 Reduce the tree T j
i with respect to vi and vl	

�	 If the reduction was successful� replace vi and vl by a new representative vfi�lg	

After the reduction� Z may appear either between X and vfi�lg� or between Y and vfi�lg	
Hence the subgraph corresponding to Z is embedded either between the subgraph corre�
sponding to X and the vertex v or between the subgraph corresponding to Y and v	

As shown in Section �	�	
 this approach implies the loss of information stored between the
pertinent leaves� and the ML�values ML�v�� v��� and ML�v�� v�� get lost	

Z v�v�

YX
A

v� v�

Figure �	
�� Resulting PQ�tree after attaching T j
l to T j

i 	

YX
A

v� v�

v�v� Z

Figure �	
�� Permutation that is not consistent	

However� keeping the pertinent leaves together with all ML�information in the tree� not re�
placing them by representatives yields problems	 Somehow swapping the subtree Z around
the pertinent sequence has to be allowed in order to mirror the possible embeddings	 This
can only be achieved by introducing a new P � or Q�node A and by making the root of
T j
l and the pertinent subtree of T j

i children of A	 However� the set of permutations repre�
sented in the new PQ�tree is not consistent with the set of permutations of T j

i 	 Consider
for instance the replacement shown in Fig	 �	
�	 This shows a PQ�tree after replacing the
pertinent sequence v�� v� by new Q�node A� and adding the sequence v�� v� as children
to A	 The permutation shown in Fig	 �	
� is consistent with PERM�T j

i � and PERM�T j
l �	

Figure �	
� shows a permissible permutation of the new PQ�tree that is not consistent
with PERM�T j

i �	 The permutation #frontier�X�� v�� v�� frontier�Y �$ is not in PERM�T j
i �	

Hence� we cannot keep the pertinent sequences of the two PQ�trees	 Rather we replace the
pertinent sequence of every PQ�tree by a single representative and the following lemmas
justify this approach	
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Lemma ����� Let G � �V�E� be a k�level graph� Let Hj
� � H

j
� � � � � � H

j
l be l 
 
 extended

forms of Gj and v � V j�� with Sv
i �� � for all i � �� 
� � � � � l� Let frontier�Hj

i �	 Sv
i �� � for

all i� Let G� � �V �� E �� be a �k � ���level graph constructed from G as follows�

	� Set G� �� G�


� Insert for every set Sv
i a new vertex vi�

�� For every i and every �v � Sv
i let �w� �v� be the only incoming edge of �v in Hj

i � and

�a� remove the edge �w� v� corresponding to �w� �v� from G�� and

�b� add a new edge �w� vi��

�� Add for all i the edge �vi� v� to G
��

�� For every level i � j � �� j � 
� � � � � k� and every w � V i set lev�w� � i� ��

�� Place all new vertices vi on level j � ��

� Introduce new dummy vertices for new long edges�

Then G is level planar if and only if G� is level planar�

Figure �	
� shows an example of four extended forms merged at a vertex v� where Fig	 �	��
shows an example of the graph G�	

w�
� w�

�w�
p�

w�
p�

w�
� w�

�w�
p�

w�
p�

Hj
�

Hj
� Hj

�

Hj
�

v

Figure �	
�� Four nonsingular extended forms merged at vertex v	

Proof� Consider a level planar embedding of G�	 By removing the dummy vertices and
identifying all vertices vi and the vertex v� a level planar embedding of G is constructed	
Consider now a level planar embedding of G	 The assumption that frontier�Hj

i �	 Sv
i �� �

implies that the edges corresponding to Sv
i �� � form a consecutive sequence in the clockwise

order of the incoming edges of v	 Replacing every set of edges corresponding to Sv
i as

described in the lemma constructs a level planar embedding of G�	
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w�
� w�

� w�
�w�

p�
w�
p�w�

�w�
p�

w�
p�

v� v� v� v�

Hj
�

Hj
� Hj

�

Hj
�

v

Figure �	��� A graph G� with vertices vi inserted	

Lemma �	�� leaves open in which order pairwise merge operations have to be performed	
The lemma only allows to replace every pertinent sequence in a PQ�tree by a single repre�
sentative� as long as no two PQ�trees have been merged at that vertex before	 If more than
two extended forms are adjacent to the same vertex� we are confronted with the fact that
after merging and reducing the two corresponding PQ�trees two pertinent representatives
exist in the new PQ�tree that again have to be replaced by a single representative	 The
following lemma handles this in a suitable way	

Lemma ����� Let G � �V�E� be a k�level graph� Let Hj
� � H

j
� � � � � � H

j
l be l 
 
 extended

forms of Gj and v � V j�� with Sv
i �� � for all i � �� 
� � � � � l� Let frontier�Hj

i �	 Sv
i �� � for

all i� Let 	l be any permutation of f�� 
� � � � � lg� Let G�
�l

� �V �
�l
� E �

�l
� be a �k � l 	 ���level

graph constructed from G by performing steps 	 to � of Lemma ��		 and the following
steps�

�� For every level i � j � �� j � 
� � � � � k� and every w � V i set lev�w� � i� l 	 ��

�� Place all new vertices vi on level j � ��

�� For every i � j � 
� j � �� � � � � j � l 	 � insert a single vertex xi on level i�

� Add the edges �v�l��� xj���� �v�ll�� v� and �xj�l��� v��

�� For every i � 
� �� � � � � l 	 � add the edge �v�li�� xj�i��

�� For every i � �� �� � � � � l 	 � add the edge �xj�i��� xj�i��

	�� Introduce new dummy vertices for long edges�

Then G is level planar if and only if there exists a permutation 	l such that G�
�l

is level
planar�
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Proof� Consider a level planar embedding of G�
�l
	 By removing the dummy vertices and

identifying the vertices v� xj�l��� xj�l��� � � � � xj�� a level planar embedding of the graph G�

is constructed	 According to Lemma �	�� G is level planar	

Consider now a level planar embedding of G	 As described in Lemma �	��� a level pla�
nar embedding of G� is constructed	 Taking the order from left to right of the vertices
v�� v�� � � � � vl as they appear on level j � � in the embedding� a permutation 	l is obtained	
Introducing the l 	 
 extra vertices on the l 	 
 extra levels� removing the edges �vi� v��
and inserting edges according to the induced permutation 	l� a level planar embedding of
a graph G�

�l
is constructed	

Figure �	�� shows a graph G�
�l

constructed from our example shown in Fig	 �	��	 The
permutation is 	l � #
� �� �� �$	 The embedding of G� shown in Fig	 �	�� indicates that
it is also possible to choose �	l � #�� 
� �� �$ as permutation for constructing a graph G�

��l
	

The graph G�
��l

is shown in Fig �	�
	 Observe the di�erence between the two graphs	 Let
�G�

�l
�j�l� and �G�

��l
�j�l� be the subgraph of G�

�l
and G�

��l
� respectively� induced by the �rst

j�l levels	 Then �G�
�l
�j�l is able to exchange Hj

� and H
j
� without destroying level planarity�

while the level planar embedding of �G�
��l
�j�l is �xed �up to reversion�	

w�
� w�

�

v�

xj��

xj��

v�v� v�

v

Hj
�

Hj
� Hj

�

Hj
�

w�
�w�

p�
w�
p� w�

�w�
p�

w�
p�

Figure �	��� The graph G�
�l
constructed from G� with 	l � #
� �� �� �$	 The

black vertices have been introduced by lemma �	�
� the white vertices are
new dummy vertices	

The l	
 extra vertices xj��� xj��� � � � � xj�l�� each correspond to a pairwise merge operation
of two �remaining� forms that have a virtual vertex labeled v in their frontier	

Although according to Lemma �	�
 there exists a permutation such that merging according
to this permutation constructs a level planar graph� we are not allowed to chose an arbitrary
permutation that seems to �t	 Consider the example shown in Fig	 �	�
	 If a sequence of
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Hj
�

Hj
� Hj

�

Hj
�

w�
�w�

p�
w�
p�w�

�w�
p�

w�
p�

Figure �	�
� The graph G�
��l
constructed from G� with �	l � #�� 
� �� �$	

merge operations is applied as indicated by the drawing� subsequent reductions in level
l � lev�v� fail� if they require Hj

� to be nested inside of Hj
� and Hj

� to be nested inside of
Hj

� 	

In general� forms are adjacent to more than one vertex v � V j��	 In case that forms are
also adjacent to vertices u�� u�� � � � � u� � V j��� � 
 �� and v �� ui� for all i � �� 
� � � � � �� we
not only have to merge the forms at the vertex v but also have to identify all other virtual
vertices with the same label ui	 We will see in Sections �	� and �	� how this is implemented	

The following lemma takes v�singular forms of Gj into account	 Since we need to replace the
pertinent sequence by a single representative� the information of the space that is available
to place forms within the pertinent sequence gets lost	 Hence another strategy has to be
applied that is prepared by this lemma	

Lemma ����� Let G � �V�E� be a k�level graph� Let Hj
� � H

j
� � � � �H

j
l be l 
 
 extended

forms of Gj and v � V j�� with Sv
i �� � for all i � �� 
� � � � � l� Assume further that for some

� � q � l

frontier�Hj
i �	 Sv

i �� � for all i � f�� 
� � � � � qg

and

frontier�Hj
i � � Sv

i for all i � fq � �� q � 
� � � � � lg �

Let 	q be any permutation of f�� 
� � � � � qg� Let p � f�� 
� � � � � qg be an arbitrary number� Let
G�

�q
be the �k � q 	 ���level graph constructed from Hj

� � H
j
� � � � � � H

j
q according to the rules

of Lemma ��	
 if q 
 
� Otherwise let G�
�q

� G� Let G
vp
�q � �V

vp
�q � E

vp
�q � be a �k� q����level

graph constructed from G�
�q

as follows�
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	� Set G
vp
�q �� G�

�q
�


� For every level i � j � �� j � 
� � � � � k � q 	 �� and every w � Vi set lev�w� � i � 
�

�� Insert for every Hj
i � i � q � �� q � 
� � � � � l� a new vertex vi�

�� For every �v � Sv
i �� �� i � q � �� q � 
� � � � � l� let �w� �v� be the only incoming edge of

�v in Hj
i � and

�a� remove the edge �w� v� corresponding �w� �v� from G
vp
�q � and

�b� add a new edge �w� vi��

�� Place all new vertices vi� i � q � �� q � 
� � � � � l� on level j � ��

�� Insert a new vertex vs on level j � 
�

� For every i � q � �� q � 
� � � � � l� add the edge �vi� vs��

�� Add the edge �vs� vp��

�� Introduce new dummy vertices for long edges�

Then G is level planar if and only if there exists a permutation 	q and a vertex vp� p �
f�� 
� � � � � qg� such that G

vp
�q is level planar�

Figure �	�� shows an example of three nonsingular and two v�singular extended forms�
merged at a vertex v	 Figure �	�� shows a graph Gv�

��
constructed from G��	

Proof� Consider a level planar embedding of G
vp
�q 	 By removing the dummy vertices and

identifying the vertices v� vs� vq��� vq��� � � � � vl� xj�l��� xj�l��� � � � � xj��� and v�� v�� � � � � vq a
level planar embedding of G is constructed	

Consider now a level planar embedding E of G	 Let r � fq � �� q � 
� � � � � lg such that
LL�Hj

r � � LL�Hj
i � for all i � fq � �� q � 
� � � � � lg	 Let �E be the level planar embedding

arising from E by placing allHj
i for all i � fq��� q�
� � � � � lg	frg next toHj

r in a sequence	
�This embedding is obviously level planar since all v�singular forms are �smaller� than Hj

r 	�
The following two cases may occur	

�	 The incoming edges corresponding to Sv
r appear within the incoming edges corre�

sponding to Sv
i of some Hj

i � i � f�� 
� � � � � qg �Hence� the incoming edges correspond�
ing to Sv

i do not form a consecutive sequence in the clockwise order of incoming edges
of v	�� Set p �� i	


	 The incoming edges corresponding to Sv
r appear next to the incoming edges corre�

sponding to Sv
i of some Hj

i � i � f�� 
� � � � � qg� Set p �� i	
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Figure �	��� Three nonsingular and two v�singular extended forms merged
at vertex v	

We now add vertices v�� v�� � � � � vq for the nonsingular forms as described in Lemma �	���
constructing a graph �G�� transforming the embedding �E correspondingly into �E �	 Taking
the order of the vertices v�� v�� � � � � vq as they appear on level j � � in the embedding �E ��
we get a permutation 	q	 Introducing the extra vertices on the extra levels and inserting
edges according to the induced permutation 	q a level planar embedding of a graph G�

�q
is

constructed	 We then introduce the extra vertices vi� i � q � �� q � 
� � � � � l and vs at the
position of Hj

i � i � q��� q�
� � � � � l �all appearing consecutively in �G� and expanding G�
�q

by two levels we get a level planar embedding of G
vp
�q 	

If the highest v�singular form can be embedded level planar into G�
�q
� all other v�singular

forms can be embedded as well� taking advantage of the fact that these forms all can be
embedded next to the highest v�singular form	 The position� where the highest v�singular
form is embedded� is de�ned by either two consecutive incoming edges of v� belonging to
nonsingular forms� or by one of the endmost incoming edges also belonging to nonsingular
forms	 Thus we need to detect if there are incoming edges of v such that the v�singular
forms can be embedded between them	

Using PQ�trees� an interpretation for placing a v�singular form Rj
i between two consecutive

incoming edges of v corresponding to some other form Rj
l � can be given	 The PQ�tree Ti

corresponding to the reduced extended form Rj
i is added to the pertinent subtree of the

PQ�tree Tl corresponding to Rj
l 	 More precisely� the PQ�tree Ti is added as a child to a

node of the pertinent subtree of Tl	 The following lemma handles this in a suitable way	
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Figure �	��� The graph Gv�
��

constructed from G�
��
	

Lemma ����� Let Hj
� and Hj

� be two forms such that Hj
� and Hj

� both have at least one
virtual vertex labeled v� Let T� and T� be the corresponding PQ�trees of Hj

� and Hj
� such

that the trees T� and T� both have been reduced with respect to v and the sets of leaves labeled
v have not been replaced by single representatives� Assume further that LL�T�� � LL�T���
and that Sv

� � frontier�T��� Let X be the pertinent root of Sv
� � Then there exists a level

planar embedding of Hj
� �vH

j
� such that Hj

� is embedded into an interior face of Hj
�� if one

of the following two conditions for X holds�

	� X is a P �node and the inequality ML�X� � LL�T�� holds�


� X is a Q�node with ordered children X�� X�� � � � � Xt where X�� X���� � � � � X�� � � � �
� � t� is the pertinent sequence of children of X� and for some a � f���� ��
� � � � � �g
the inequality ML�Xa��� Xa� � LL�T�� holds�

Proof� Assume that X is a P �node and let Y and Z be two children of X	 It follows from
ML�X� � LL�T�� that ML�frontier�Y ��frontier�Z�� � LL�T��	 Since Y and Z are children
of a P �node there exists a leaf y � frontier�Y � and a leaf z � frontier�Z� and a permutation
	 � PERM�T�� such that y and z appear consecutively	 The permutation 	 witnesses a
level planar embedding E of Hj

� 	 Identifying the virtual vertices Sv
� in E constructs a level

planar embedding E � with an interior face large enough to embedded Hj
� level planar in it	

The proof for X being a Q�node is analogous	
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The Lemma �	�� reveals a strategy to handle the singular forms	 Since we want to replace
the pertinent sequences of T� and T� by single representatives �in order to permit the
construction of PQ�trees that are not consistent with their origins� before the tree T� is
attached to T�� we have to install a system to keep the information� where actually to place
T�	 Hence� for every representative v� two numbers PML�v�� and QML�v�� are introduced	
In case that the root X of the pertinent subtree of a PQ�tree is a P �node� set

PML�v�� � ML�X� �

In case that X is a Q�node� we set

QML�v�� � min

�
ML�Y� Z�

���� Y� Z consecutive children of X�
Y and Z pertinent

�
�

Using Lemma �	�� the information necessary for attaching T� to T� is now available at the
single representative	 We need to consider how the information of the single representatives
is maintained� when representatives of di�erent PQ�trees are reduced and replaced by a
new single representative	

When merging two nonsingular forms while reducing and replacing their single repre�
sentatives v� and v� by a new single representative vf���g� the numbers PML�vf���g� and
QML�vf���g� have to be computed by taking the minimum of the PML� and QML�
values of v� and v�	 Here we need to take into account that merging two forms may
yield something that we call a cavity 	 Considering the intersection C of the half space
fx � R

� j x� 
 k 	 j 	 �g and the outer face of a level planar drawing of the current
extended forms� a v�cavity Cv is de�ned to be a region of C such that v is adjacent to the
region	 Obviously v can be adjacent to several such regions	 Moreover� these regions are
not unique� since they depend on the current embedding	 This is no drawback� since we
only need to maintain a lower bound on the size of the largest v�cavity which can be easily
implemented using the PQ�trees and the LL� and ML�values of Heath and Pemmaraju
������ �����	 Figure �	�� shows such a v�cavity	 The arrow on the right side of the �gure
determines the height of the cavity	 A v�singular form can only be level planar embedded
within this cavity� if it is smaller than the height of the cavity	 We de�ne LL�Cv� to be the
low indexed level of a v�cavity Cv as ML�fw � V j�� j w is on the boundary of Cvg�	 The
height of a v�cavity Cv is j � � 	 LL�Cv�	 The following lemma reveals how to obtain a
lower bound on the height of the largest v�cavity in every level planar embedding of two
forms that have been v�merged	 If two PQ�trees have been merged at their leaves labeled
v� the LL�value of a v�cavity is obviously smaller or equal to the ML�value stored at the
root of the pertinent subtree	 Notice that we here make use of the ML�values that have
been �technically� set during the merge operations	

Lemma ���	� Let Rj
� and R

j
� be two nonsingular reduced extended forms of Gj of a level

planar graph G with Sv
� �� � and Sv

� �� �� Let T� and T� be their corresponding PQ�trees
with LL�T�� � LL�T��� representing all level planar embeddings of R

j
�� and R

j
�� respectively�

Let T be the PQ�tree constructed by v�merging T� into T�� Let X be the root of the pertinent
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�������������������������������������
�������������������������������������
�������������������������������������
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C

v�cavity

v�cavity

v

height

Figure �	��� A v�cavity	

subtree in T � If X is a P �node let h � ML�X�� and if X is a Q�node let Y and Z be the
�only� pertinent children of X and let h � ML�Y� Z�� Let Cv be the largest v�cavity in an
arbitrary level planar embedding of Rj

� �v R
j
�� Then the following holds�

LL�Cv� � h�

Proof� By construction of the merge operation we have that h � LL�T�� holds	 Since Rj
�

can be embedded level planar in Rj
�� there must exist in every level planar embedding at

least one v�cavity Cv such that LL�Cv� � h	

If the PQ�tree that has been constructed by a merge operation indeed represents all level
planar embeddings of the corresponding merged forms� the result of lemma �	�� is easily
expanded to iterated v�merge operations	 This allows us to apply a sequence of reduce and
merge operations of single representatives v�� v�� � � � � vl	 Replacing them by a new single
representative v�� the PML� and QML�values are chosen by taking the minimum of the
values PML�vi� and QML�vi� for all i � �� 
� � � � � l and the ML�values stored at the root of
the pertinent subtree	

The second task was to �nd an ordering that merges the forms correctly at the same vertex	
In the next two chapters� we present results that justify an ordering of merging the forms
according to their height	 The results are more technical	

��� Correct Level Planarity Testing

In this section� a detailed description of the level planarity test is given	 Using a function
CHECK�LEVEL that computes for every level j � 
� �� � � � � k� the set T �Gj� of PQ�trees
representing the possible permutations of V j in level planar embeddings of the components
of Gj� the algorithm LEVEL�PLANARITY�TEST can be formulated as follows	
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Bool LEVEL�PLANARITY�TESTG � �V �� V �� � � � � V k�E��

begin
Initialize T �G���
for j � � to k 	 � do
T �Gj��� � CHECK�LEVEL�T �Gj�� V j����
if T �Gj��� � � then

return �false��
return �true��

end	

The procedure CHECK�LEVEL computes all possible permutations of V j�� in level planar
embeddings of the components of Gj�� returning a set of PQ�trees T �Gj���	 The proce�
dure CHECK�LEVEL is diveded into two phases	 The �rst reduction phase constructs the
PQ�trees corresponding to the reduced extended forms of Gj	 Every PQ�tree T �F j

i � that
represents all level planar embeddings of some component F j

i is transformed into a PQ�tree
representing all level planar embeddings of the extended form Hj

i 	 This is easily done by
using the function REPLACE as described in Section �	
	

The �rst reduction phase then reduces in every PQ�tree T �Hj
i �� i � �� 
� � � � � mj� all leaves

with the same label� thereby constructing a new PQ�tree� representing all level planar
embeddings of Hj

i � where leaves with the same label occupy consecutive positions	 If one
of the reductions fails� then G cannot be level planar	 Leaves with the same label v are
replaced by a single representative vi	 Such a single representative vi gets the same label
v� storing either PML�vi� � ML�X� if the root X of the pertinent subtree was a P �node
or QML�vi� � minfML�Y� Z� j Y� Z consecutive� pertinent children of Xg� if the root was
a Q�node	 The value of the unde�ned variable of QML�vi� and PML�vi� is set to k � �	
The representative corresponds to the newly introduced node vi of Lemma �	��

PQ�trees of several reduced extended forms are merged in the second reduction phase using
a function INSERT if the forms are adjacent to the same vertex v on level j ��	 The PQ�
trees corresponding to the reduced extended forms are merged pairwise and according to
their height	 Initially� the PQ�trees of the two highest forms are merged to construct a
PQ�tree T 	 We then merge PQ�trees of the smaller forms into T � always considering the
PQ�tree of the highest remaining form �rst	 It is shown in the next section that using
this ordering a PQ�tree T is constructed� representing all possible level planar embeddings
of the merged form	 If there are more than one v�singular reduced extended forms for
some v � V j��� we only need to consider the highest one of these forms acccording to
Lemma �	��	

Situations may occur� where several forms are not only adjacent to a common vertex
v � V j�� but also to other common vertices w � V j��� w �� v	 Thus� the corresponding
PQ�trees that have to be v�merged contain several leaves with common label w �� v	 After
the PQ�trees have been v�merged� these leaves have to be reduced as well	 If one of the
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reductions applied in this phase fails� the graph G is not level planar	 The PML� and
QML�values are updated after every reduction using a function UPDATE	

Finally� a PQ�tree is added for every source of V j��� and the set of PQ�trees constructed
by the function CHECK�LEVEL represents all level planar embeddings of the components
Gj��	

The following code fragment contains operations that perform on the graph G	 They are
kept in the code for documentational purposes	 Any implementation would of course rely
only on the manipulation of PQ�trees	

T �Gj��� CHECK�LEVELT �Gj�� V j���

begin
First Reduction Phase

for every component F j
i in Gj and its corresponding PQ�tree in T �F j

i � do

construct Hj
i �

construct T �Hj
i � �from the PQ�trees obtained in the previous iteration��

for every v � V j�� do

for every extended form Hj
i do

if Sv
i �� � then

if REDUCE�T �Hj
i �� S

v
i � � � then return ��

else
let vi be a single representative of Sv

i �
REPLACE�Sv

i �vi��
determine PML�vi� and QML�vi��

for every extended form Hj
i do

T �Rj
i � �� T �Hj

i ��
Second Reduction Phase
for every v � V j�� do

reorder indices such that Sv
� � S

v
� � � � � � S

v
p �� �� and Sv

p��� S
v
p��� � � � � S

v
mj

� ��

W �� fw � V j�� j �i� l � f�� 
� � � � � pg� i �� l� Sw
i �� � and Sw

l �� �g�
let q be the number of v�singular reduced extended forms�

eliminate all v�singular Rj
i except for the one with the lowest LL�value�

renumber the remaining Rj
i from � to p	 q � ��

p �� p	 q � ��

sort the Rj
i such that LL�Rj

�� � LL�Rj
�� � LL�Rj

�� � � � � � LL�Rj
p��

for i � 
 to p do

T �Rj
�� �� INSERT�T �Rj

��� T �R
j
i �� v��

Rj
� �� Rj

� �v R
j
i �

if REDUCE�T �Rj
��� S

v
�� � � then return ��

else
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let v� be a new single representative of Sv
� �

UPDATE�Sv
� �v

���
REPLACE�Sv

� �v
���

for every w � W do

if REDUCE�T �Rj
��� S

w
� � � � then return ��

else
let w� be a new single representative of Sw

� �
UPDATE�Sw

� �w
���

REPLACE�Sw
� �w

���
add for every source a corresponding PQ�tree to T �Gj��
return T �Gj��

end	

We now give a method INSERT that merges two PQ�trees	 INSERT itself uses the function
MERGE as it has been introduced in Section �	�	� and guarantees correct treatment of
singular forms	 Let Tlarge and Tsmall be two PQ�trees such that Sv

large �� � and Sv
small �� ��

and LL�Tlarge� � LL�Tsmall�	 Assume further that Sv
large and Sv

small have been reduced and
replaced by single representatives vlarge and vsmall � respectively� and that Sv

large � fvlargeg�
and Sv

small � fvsmallg� respectively	 INSERT returns a new PQ�tree Tmerge	 The method
does not reduce the pertinent sequence� nor does it replace pertinent leaves by a single
leaf	 Observe that in case of frontier�Tsmall � � Sv

small � we do not really add Tsmall to Tlarge �
if Tsmall can be added to the former pertinent subtree of Tlarge 	 This merge operation leaves
Tlarge unchanged	

Tmerge INSERT�Tlarge � Tsmall � v�

begin
if frontier�Tsmall � �� Sv

small then
Tlarge �� MERGE�Tlarge �Tsmall �v��

else if PML�vlarge� �� k � � then
if PML�vlarge� � LL�Tsmall � then

do nothing�
else

Tlarge �� MERGE�Tlarge �Tsmall �v��
else if QML�vlarge� �� k � � then

if QML�vlarge� � LL�Tsmall � then
do nothing�

else
Tlarge �� MERGE�Tlarge �Tsmall �v��

return the new PQ�tree Tlarge �
end	

The method UPDATE is a straightforward implementation of �nding a lower bound on
the height of a cavity that could possibly embed singular components	
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void UPDATE�Sv
i �v

��

begin
PMLmin �� minfPML��v� j �v � Sv

i g�
QMLmin �� minfQML��v� j �v � Sv

i g�
let X be the root of the pertinent subtree	
if X is a P �node then

PMLX �� ML�X��
else

QMLX �� min

�
ML�Y� Z�

���� Y� Z consecutive children of X�
Y and Z pertinent

�
�

if minfPMLmin�PMLXg � minfQMLmin�QMLXg then
PML�v�� �� minfPMLmin�PMLXg�
QML�v�� �� k � ��

else
QML�v�� �� minfQMLmin�QMLXg�
PML�v�� �� k � ��

end	

��� Proving the Correctness

In this section we prove the correctness of the level planarity test	 The strategy is to
apply an inductive argument	 Since a subgraph of G that is induced by a source and its
outgoing edges is a trivial hierarchy� we know by Lemma �	� that for such a subgraph
there exists a PQ�tree that represents the set of level planar embeddings	 We need to
show that throughout every iteration the PQ�trees are correctly maintained and the set of
permissible permutations always represents exactly the set of level planar embeddings of
the corresponding form	

In Lemma �	��� the �rst reduction phase is proven to be correct	 Proving the correctness
of the second reduction phase is more involved	 We show in Lemmas �	�� and �	�� that
merging a set of PQ�trees at their leaves labeled v is performed correctly if the functions
INSERT and REDUCE are applied as described in the Section �	�	 If several reduced
extended forms have been v�merged� the new form may contain several vertices with a
same label w �� v	 Lemma �	
� shows that the reduction of these leaves labeled w in the
corresponding PQ�tree is performed correctly	

We start with a lemma on the correctness of the �rst reduction phase	 Let us assume that
we are given a k�level planar graph G� an extended form Hj

i � � � j � k� of G� and a
PQ�tree Ti that represents all level planar embeddings of Hj

i 	 To prove the correctness of
the �rst phase we show that there exists a PQ�tree �Ti equivalent to Ti� such that all leaves
with a common label appear consecutively in the frontier of �Ti	 If such a PQ�tree exists� we
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are obviously able to reduce for every v � V j�� the PQ�tree Ti with respect to the leaves
labeled v and to replace these leaves by a single representative	 It is easy to see that this
new PQ�tree represents level planar embeddings of the reduced extended form Rj

i and it
remains to show that the PQ�tree represents exactly all level planar embeddings of Rj

i 	

Lemma ���
� Let G � �V�E� be a level planar graph with k � � levels� Let F j
i �

i � f�� 
� � � � � mjg� be an arbitrary component of Gj� � � j � k� and let Hj
i be its ex�

tended form and Rj
i be its reduced extended form� If Ti is a PQ�tree representing all level�

planar embeddings of Hj
i � the PQ�tree T

�
i constructed from Ti by reducing every set S

v
i and

replacing it by a single representative vi witnesses all level planar embeddings of R
j
i �

Proof� Although the results of the lemma should be clear by the previous discussions� we
give the proof in full detail	 We �rst show that there exists a PQ�tree �Ti that is equivalent to
Ti� such that for all v � V j��� the leaves corresponding to Sv

i occupy consecutive positions
in the frontier of �Ti	

Consider an arbitrary level planar embedding E�Rj
i � of the reduced extended form Rj

i and
let 	 be the witness of E�Rj

i �	 The level�j neighbors w � V �F j
i �

j of v � V j�� in F j
i form a

consecutive sequence on level j in E�Rj
i � �except for possible sinks�	 Every edge e � �w� v��

w � V �F j
i �

j� v � V j�� corresponds to a virtual vertex of Sv
i 	 Therefore� we get a level planar

embedding of E�Hj
i � of Hj

i by replacing every edge e by a virtual edge with an incident
virtual vertex labeled v in E�Rj

i �	 See Fig	 �	�� for an illustration	 Let 	� be a witness to
E�Hj

i �	 By construction� all virtual vertices labeled v form a consecutive sequence in 	� for
every v � V j��	 Since E�Hj

i � is a level planar embedding of Hj
i � its witness 	

� must be in
PERM�Ti�	 Thus there exists a PQ�tree �Ti equivalent to Ti with frontier� �Ti� � 	�	

w�w�

v

wq w�w�

v vv

wq

Figure �	��� Illustration of the proof of Lemma �	��	 For every edge �wi� v�
wi � V �F j

i �
j� i � �� 
� � � � � q� a virtual edge with a virtual vertex labeled

v is introduced	

The existence of the PQ�tree �Ti that is equivalent to Ti guarantees that the reduction
of Ti with respect to Sv

i for every v � V j�� is successful	 These reductions construct a
PQ�tree �T �

i with PERM� �T �
i � � PERM�Ti�	 Furthermore we have 	� � PERM� �T �

i � and we
may assume that 	� � frontier� �T �

i �	

Replacing in �T �
i all leaves with a common label by a single representative� we obtain a PQ�

tree T �
i � where we have by construction for the witness 	 of E�Rj

i � that 	 � PERM�T �
i �	

Thus T �
i represents all level planar embeddings of Rj

i 	
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The next lemma shows a more technical result that is needed for proving the correctness of
the second reduction phase	 The lemma is motivated by Observations �	� and �	��	 Let Rj

i

and Rj
l be two reduced extended forms and let Ti and Tl be their corresponding PQ�trees

where LL�Ti� � LL�Tl�	 When merging the PQ�trees Ti and Tl at leaves labeled v� we insert
the PQ�tree Tl into the PQ�tree Ti	 After applying any of the merge operations presented
in �	�	�� the tree Tl is completely contained as a subtree of Ti	 While the frontier of Ti has
changed �by inserting Tl as a subtree� the frontier of Tl has not changed at all	 Hence� all
leaves in frontier�Tl�� including the leaf labeled v� form a consecutive sequence in the new
PQ�tree Ti	

This implies that if we want to use these merge operations for PQ�trees� the level��j���
vertices of Rj

l must form a consecutive sequence on level j � � in every level planar em�
bedding of Rj

i �v R
j
l 	 However� this is not the case in general	 Consider the example shown

in Fig	 �	�� showing four reduced extended forms Rj
�� R

j
�� R

j
�� R

j
� that have been v�merged	

The forms are constructed similarly to the components F�� F�� F�� F� that are shown in the
counterexample of Fig	 �	�� on page ��	 If we �rst v�merge Rj

� into Rj
� and then v�merge

Rj
� into Rj

� and then v�merge Rj
� into Rj

� we know already from Section �	�	
 that the
PQ�tree constructed by this sequence of merge operations is not reducible �see Fig	 �	��
on Page ���	 In fact� there exist level planar embeddings of Rj

� �v R
j
� �v R

j
� �v R

j
� such

that the virtual vertices of Rj
� do not form a consecutive sequence on level j � �	 Such an

embedding is shown in Fig	 �	�� where the virtual vertices w�
�� w

�
�� � � � � w

�
q�

of Rj
� and the

vertex v are separated by the virtual vertices w�
�� w

�
�� � � � � w

�
q�

of Rj
�	

�
�
�
�

����
��
��
��
��
��
��
��
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�
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�
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Figure �	��� Level planar embedding of the components Rj
� �v R

j
� �v

Rj
� �v R

j
� where the virtual vertices w�

�� w
�
�� � � � � w

�
q�

are separated from v
by w�

�� w
�
�� � � � � w

�
q�
	

If we want to use the merge operations� we have to guarantee that in all level planar embed�
dings of two v�merged forms� the virtual vertices of the smaller form appear consecutively
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on level j��	 As the counterexample shows� this does not necessarily hold for every merge
operation	

The following two lemmas show that if there are two or more reduced extended forms
that have to be v�merged� there exists an ordering such that pairwise v�merging the forms
according to this ordering guarantees the following	 When v�merging two forms� the vir�
tual vertices of the smaller form always form a consecutive sequence in all level planar
embeddings of the merged form	 The ordering is obtained by sorting the forms according
to their LL�values	 We merge the two reduced extended forms with lowest LL�value �that
is� we merge the two largest forms�	 This constructs a new form� say F � and we then start
merging the largest remaining form into F until all forms are merged into F 	

Since the order of merging the forms is very important� we expand our terminology	 Let
Hj

� � H
j
� � � � � � H

j
p� p 
 
� be extended forms of Gj such that Sv

i �� � for all i � f�� 
� � � � � pg	
Assume without loss of generality that

LL�Hj
�� � LL�Hj

�� � LL�Hj
�� � � � � � LL�Hj

p� �

Let F be the subgraph constructed by v�merging Hj
� � H

j
� � � � � � H

j
p	 Thus� F equals Hj

� �v

Hj
� �v � � ��vH

j
p	 If for some vertex w �� v the sets Sw

i and Sw
l of two extended forms Hj

i and

Hj
l � i �� l� are not empty� the virtual vertices in these sets are not identi�ed in F 	 Thus all

virtual vertices with common label are kept separate except for the virtual vertices labeled
v	

Let Hj

f��������ig � Hj
� �v H

j
� �v � � � �v H

j
i denote the form that is constructed by v�merging

Hj
� � H

j
� � � � � � H

j
i in this order	 �In our previous terminology� which is more useful to describe

the algorithm� Hj

f��������ig is renamed into Hj
� 	� Obviously� we have that Hj

f��������pg � F 	

Furthermore� let Rj
�� R

j
�� � � � � R

j
p be the reduced extended forms of Hj

� � H
j
�� � � � � H

j
p� and

de�ne Rj

f��������ig analogously to Hj

f��������ig	

For an extended form Hj
i or its reduced extended form Rj

i let �depending on the con�
text� S

v

i denote the set of virtual vertices of Hj
i or Rj

i except for the vertices labeled
v	 Let S

v

f��������ig denote the set of virtual vertices except for the vertices labeled v of

Hj

f��������ig or Rj

f��������ig� depending on the context	 Let 	f��������ig� i � p� denote a wit�

ness to a level planar embedding of Hj

f��������ig or Rj

f��������ig� respectively	 In the exam�

ple of Fig	 �	�� we have S
v

� � fw�
�� w

�
�� � � � � w

�
q�
g� and S

v

f�����g � fw�
�� w

�
�� � � � � w

�
q�
g �

fw�
�� w

�
�� � � � � w

�
q�
g � fw�

�� w
�
�� � � � � w

�
q�
g	 The witness of the shown level planar embedding

is 	f�������g � #w�
�� w

�
�� � � � � w

�
q�
� w�

�� w
�
�� � � � � w

�
q�
� w�

�� w
�
�� � � � � w

�
q�
� v� w�

�� w
�
�� � � � � w

�
q�
$	

In order to prove that the virtual vertices of the smaller form Hj
i �that is merged into the

larger form Hj

f��������i��g� appear consecutively in any level planar embedding of the new

form Hj

f��������ig� we need to show that S
v

i and the vertex v are consecutive	 The concept of

the proof is to assume the opposite and then to �nd a path in Hj
i and a path in Hj

f��������i��g

that cross each other in Hj

f��������ig	
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Lemma ����� Let G � �V�E� be a level planar graph with k � � levels� and let v � V j��

be an arbitrary vertex� where j � k� Let Hj
� � H

j
� � � � � � H

j
p� p 
 
� be extended forms such

�i� Sv
i �� � for all i � f�� 
� � � � � pg� and

�ii� LL�Hj
�� � LL�Hj

�� � LL�Hj
�� � � � � � LL�Hj

p��

Then the following holds� If 	f��������ig� i � p� is a witness to a level planar embedding of

Hj

f��������ig� then the vertices of S
v

i form a consecutive sequence in 	f��������ig and the vertex v

appears next to S
v

i in 	f��������ig�

Proof� Throughout the proof� we will consider Hj
� � H

j
�� � � � � H

j
p as well as Hf��������i��g as

subgraphs of Hf��������ig	 Let 	f��������ig� 
 � i � p� be a witness of a level planar embedding

Ef��������ig of Hf��������ig	 The lemma holds trivially� if S
v

f��������i��g � � or S
v

i � �	 Thus assume�

there exists an x � S
v

f��������i��g � fvg� such that x appears between two vertices y� and y�

of S
v

i in 	f��������ig	 By de�nition� Hj
i is connected	 Furthermore� v is not a cut vertex in

Hj
i �otherwise Hj

i would be v�connected�	 Hence� there exists a path P in Hj
i connecting

y� and y� not containing v	 Since LL�Hj

f��������i��g� � LL�Hj
i � and Hj

f��������i��g is connected�

there exist a vertex z � Hj

f��������i��g such that lev�z� � lev�w� for all w � P and a path
�P in Hj

f��������i��g connecting x and z �see Fig	 �	���	 By construction the paths P and
�P are disjoint �since Hf��������i��g and Hj

i are identi�ed only in v�� but cross each other�	

Thus� 	f��������ig cannot be a witness of a level planar embedding of Hj

f��������ig� which is a
contradiction	

y�xy�

P

z

�P

Figure �	��� Illustration to the proof of Lemma �	��	 Path P connecting
y� and y� in H

j
i and path �P connecting x and z in Hj

f��������i��g cross each

other in a level embedding of Hj

f��������ig if x � S
v

f��������i��g appears between

y�� y� � S
v

i 	

Assume now that there exists an x � S
v

f��������i��g� such that x appears between the vertices

of S
v

i and v in 	f��������ig� and such that there is a vertex y � S
v

i that appears next to x	 Since
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x vy

P

z

�P

Figure �	��� Illustration to the proof of Lemma �	��	 Path P connecting
y and v in Hj

i and path �P connecting x and z in Hj
l � l � f�� 
� � � � � i 	

�g� cross each other in a level embedding of Hj

f��������ig if x � S
v

f��������i��g

appears between y � S
v

i and v	

Hj
i is connected� there exists a path P in Hj

i connecting y and v	 By construction x � S
v

l

for some l � f�� 
� � � � � i	 �g	 �Reconsider that v is a cut vertex in Hj

f��������i��g and the cut

components are exactly Hj
� � H

j
� � � � � � H

j
i��	� But LL�H

j
l � � LL�Hj

i � implies that there exist

z � Hj
l such that lev�z� � lev�w� for all w � P 	 Since v is not a cut vertex in Hj

l � there
exists a path �P in Hj

l connecting x and z that does not contain v �see Fig	 �	���	 Again�
since Hj

f��������i��g and Hj
i have only v in common� the paths P and �P are disjoint but cross

each other� which is a contradiction	

Lemma ����� Let G � �V�E� be a level planar graph with k � � levels� and let v � V j��

be an arbitrary vertex� where j � k� Let Rj
�� R

j
�� � � � � R

j
p� p 
 
� be reduced extended forms

such

�i� Sv
i �� � for all i � f�� 
� � � � � pg� and

�ii� LL�Rj
�� � LL�Rj

�� � LL�Rj
�� � � � � � LL�Rj

p��

Then the following holds� If 	f��������ig� i � p� is a witness to a level planar embedding of

Rj

f��������ig� then the vertices of S
v

i form a consecutive sequence in 	f��������ig and the vertex v

appears next to S
v

i in 	f��������ig�

Proof� Analogously to the proof of Lemma �	��	

We need to mention again that the results of Lemma �	�� and Lemma �	�� do not hold if
components are not merged according to the speci�ed order	 Consider as another example�
the forms shown in Fig	 �	
� on page ��	 Assume that the extended forms Hj

� and Hj
�

are merged �rst	 If Hj
� and Hj

f���g are v�merged� the virtual vertices of S
v

� and v are not

adjacent in any level planar embedding of Hj

f�����g	 �Unlike our �rst example of Fig	 �	���
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where the virtual vertices S
v

� are separated from v only in some level planar embeddings
of Rj

f�������g	�

Using Lemma �	��� we are able to show Lemma �	�� which proves the correctness of the
merge operations during the second reduction phase	 The lemma states that every PQ�
tree constructed by v�merging all reduced extended forms with a virtual vertex labeled v
according to their size represents exactly all level planar embeddings of the new v�connected
form	

Lemma ����� Let G� Rj
�� R

j
�� � � � � R

j
p� and the vertex v be de�ned as in Lemma ��	� except

that G is not necessary level planar� Let the reduced forms Rj
�� R

j
�� � � � � R

j
p be level planar and

suppose that the PQ�trees T �Rj
��� T �R

j
��� � � � � T �R

j
p� represent all level planar embeddings

of Rj
�� R

j
�� � � � � R

j
p�

Let T �Rj

f��������pg� be the PQ�tree constructed as described in the second merge phase of

CHECK�LEVEL� Then PERM�T �Rj

f��������pg�� is exactly the set of permutations of level�

�j � �� vertices that appear in level planar embeddings of Rj

f��������pg�

Proof� We �rst show that if 	 � PERM�T �Rj

f��������pg�� is a permutation represented by the

PQ�tree T �Rj

f��������pg�� then 	 is a witness to some level planar embedding of Rj

f��������pg	 This

can be shown following an idea of Heath and Pemmaraju ������	 The authors have shown
in one of their lemmas the special case of two components Rj

f���g � Rj
� �v R

j
�	 We adapt

that proof to the more general case and consider v�singular forms	

For all 
 � i � p let T �Rj

f��������ig� be the PQ�tree constructed in the i�th iteration of the

for�loop in the second merge phase	 Now� let 
 � i � p be �xed and assume �by induction�
that T �Rj

f��������i��g� represents �all� level planar embeddings of Rj

f��������i��g	 We show that

if 	f��������ig � PERM�T �Rj

f��������ig��� then 	f��������ig is a witness to a level planar embedding

of Rj

f��������ig	

Let vf��������i��g be the virtual vertex labeled v in Rj

f��������i��g� and let vi be the virtual vertex

labeled v in Rj
i 	 Two cases may occur� depending on whether Rj

i is v�singular �S
v

i � �� or
not �S

v

i �� ��	 We start with the nonsingular case	

�	 S
v

i �� �	

The PQ�tree T �Rj

f��������ig� has been constructed by reducing the leaves corresponding

to vf��������i��g and vi in the PQ�tree �T �Rj

f��������ig�� and replacing them by the single

representative vf��������ig afterwards� where �T �Rj

f��������ig� was the result of the INSERT

operation performed on T �Rj

f��������i��g� and T �Rj
i �	 Thus� there exists a 	�

f��������ig �

PERM� �T �Rj

f��������ig�� such that 	f��������ig arises from 	�
f��������ig by identifying the two

elements vf��������i��g and vi that appear next to each other in 	�
f��������ig	 Since S

v

i �� ��
the function INSERT has called the function MERGE	 The function MERGE has
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added the root of T �Rj
i � as a sibling to a node X � in T �Rj

f��������i��g�	 The node X �

and its parent X �in case X � was not the root of T �Rj

f��������i��g�� have been subject to

the merge operation in T �Rj

f��������i��g�	 As a result of the merge operation� the leaves

of frontier�T �Rj
i �� occur consecutively in 	�

f��������ig� as do the leaves of frontier�X ��	

Without loss of generality� we assume that the leaves of frontier�X �� are immediately
followed by the leaves of frontier�T �Rj

i �� in 	
�
f��������ig	 Hence� the permutation 	�

f��������ig

can be written as 	af��������ig	
b
f��������ig	

c
f��������ig with

	bf��������ig � PERM�T �Rj
i ��

and

	af��������ig	
c
f��������ig � PERM�T �Rj

f��������i��g��

with vf��������i��g in 	
a
f��������ig and vi in 	

b
f��������ig appearing consecutively in 	�

f��������ig	 By

assumption� 	af��������ig	
c
f��������ig is a witness to a level planar embedding E j

f��������i��g of

Rj

f��������i��g and 	bf��������ig is a witness to a level planar embedding E j
i of Rj

i 	 There are
two cases that apply depending on whether 	cf��������ig is empty or not

�a� 	cf��������ig � �	 A level planar embedding of Rj

f��������ig can be constructed by simply

placing Rj
i next to Rj

f��������i��g and then identifying the vertices vf��������i��g and

vi to a vertex vf��������ig	 Hence� 	f��������ig � PERM�T �Rj

f��������ig�� is a witness to a

level planar embedding of Rj

f��������ig	

�b� 	cf��������ig �� �	 Let w be the �rst vertex in 	cf��������ig and let Y be the smallest

common ancestor of w and vf��������i��g	 Clearly� w �� frontier�X ��	 Thus� Y is an
ancestor �not necessarily proper� of X �X being the parent of X � before the
merge operation�	 By construction of the merge operation and by Observations
�	�� �	�� and �	� we have

ML�fvf��������i��g� wg� � LL�T �Rj
i �� �

Hence� the level planar embedding E j
i of Rj

i can be nested inside the level pla�
nar embedding E j

f��������i��g of R
j

f��������i��g	 Merging the virtual vertices vf��������i��g

and vi to a vertex vf��������ig� a level planar embedding E j

f��������ig of Rj

f��������ig is
constructed in which the virtual vertices appear according to 	f��������ig	 Hence�

	f��������ig � PERM�T �Rj

f��������ig�� is a witness to a level planar embedding of

Rj

f��������ig	


	 S
v

i � �	

There are two possible cases	
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�a� The function MERGE was called by INSERT	 This case is proven analogously
to the case S

v

i �� �	

�b� The function INSERT did not call the function MERGE	 Thus either one of the
following inequalities holds�

PML�vf��������i��g� � LL�T �Rj
i �� �

or

QML�vf��������i��g� � LL�T �Rj
i �� �

It follows from Lemma �	�� and by construction of the function UPDATE that
there exists an interior face or a cavity in some embedding of Rj

f��������i��g that is

large enough to level planar embed Rj
i into it	 Hence� 	f��������ig is a witness to a

level planar embedding of Rj

f��������ig	

Thus� one direction of the equivalence stated in the lemma is proved	

To prove the reverse direction� we show that the PQ�tree T �Rj

f��������ig� represents all level

planar embeddings of Rj

f��������ig	 We show �by induction� that for any witness 	f��������ig�


 � i � p� of a level planar embedding of E j

f��������ig of Rj

f��������ig the following holds�

	f��������ig � PERM�T �Rj

f��������ig�� �

�	 S
v

i �� �	

The level��j � �� vertices in Rj

f��������ig can be partitioned into three sets� S
v

f��������i��g�

the set of all level�j � � vertices of Rj

f��������i��g except the vertex v� S
v

i � the set of

all level��j � �� vertices of Rj
i except the vertex v� and the level��j � �� vertex v	

According to Lemma �	��� the vertices of S
v

i appear consecutively in 	f��������ig� either
immediately followed by or immediately preceded by v	 We may assume that the
latter case applies	 Let �Rj

f��������ig be the graph that consists of Rj

f��������i��g and Rj
i �

where the level��j � �� vertices labeled v of the two components are not identi�ed
and kept separate	 Let Sv

f��������i��g �� fvf��������i��gg where vf��������i��g is the single

representative of v in Rj

f��������i��g and Sv
i �� fvig where vi is the single representative

of v in Rj
i 	 �Splitting� in 	f��������ig the vertex v into vf��������i��g and vi� we get a

permutation �	f��������ig that witnesses a level planar embedding �E j

f��������ig of �Rj

f��������ig	

The witness �	f��������ig can be written as �	af��������ig�	
b
f��������ig�	

c
f��������ig such that

�	af��������ig�	
c
f��������ig is a witness of a level planar embedding E j

f��������i��g of Rj

f��������i��g

and �	bf��������ig is a witness of a level planar embedding E j
i of Rj

i � and such that �with�

out loss of generality� �	af��������ig ends with Sv
f��������i��g� and �	bf��������ig starts with Sv

i 	
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Since T �Rj

f��������i��g� and T �R
j
i � correspond to Rj

f��������i��g and R
j
i � respectively� it fol�

lows by induction that �	af��������ig�	
c
f��������ig � PERM�T �Rf��������i��g��� and �	bf��������ig �

PERM�T �Rj
i ��	 We show that �	f��������ig � PERM� �T �Rj

f��������ig��� where
�T �Rj

f��������ig�
is the PQ�tree that is constructed by the function INSERT without reducing the
PQ�tree with respect to Sv

f��������i��g � S
v
i 	 There are two cases depending on whether

�	cf��������ig is empty or not	

�a� �	cf��������ig �� �	 Suppose that the �rst vertex in �	cf��������ig is w	 Since according to

Lemma �	�� the vertices of S
v

i occur consecutively preceded by v and since the
embedding �E j

f��������ig of �Rj

f��������ig is level planar the following must hold�

ML�fSv
f��������i��g� wg� � LL�T �Rj

i �� �

Let Y be the node in �T �Rj

f��������i��g� that is the least common ancestor of

Sv
f��������i��g and w	 Then there exists a child Y � of Y such that Sv

f��������i��g �

frontier�Y ��	 Since ML�frontier�Y �� � fwg� � ML�Sv
f��������i��g � fwg�� we have

according to Observation �	� that �	f��������ig � PERM� �T �Rj

f��������ig��	

�b� �	cf��������ig � �	 According to Observation �	�� �	f��������ig � PERM� �T �Rj

f��������ig��
holds	

It follows that �	f��������ig � PERM� �T �Rj

f��������ig�� with Sv
f��������i��g � Sv

i appearing con�

secutively in �	f��������ig	 This implies that the PQ�tree �T �Rj

f��������ig� can be reduced with

respect to Sv
f��������i��g�S

v
i and therefore 	f��������ig is contained in PERM�T �Rj

f��������ig��	


	 S
v

i � �	

There are two cases that may appear	

�a� The set of incoming edges of v in Rj
i �corresponding to Sv

i � separates within
the clockwise order of incoming edges of v in E j

f��������ig the set of incoming edges
corresponding to Sv

f��������i��g into two nonempty subsets	

The level��j��� vertices in Rj

f��������ig can be partitioned into two sets� S
v

f��������i��g

the set of all level��j � �� vertices of Rj

f��������i��g except the vertex v� and the

level��j � �� vertex v	 Let �Rj

f��������ig be the form that contains the components

Rj

f��������i��g and Rj
i where the incoming edges of v corresponding to Rj

f��������i��g

are not identi�ed to v but kept separate	

Obviously� �Rj

f��������ig is level planar	 Let �E j

f��������ig be the level planar embedding

of �Rj

f��������ig that is induced by E j

f��������ig	 Let S
left

f��������i��g be the set of virtual

vertices corresponding to the incoming edges of v in Rj

f��������i��g on the left side

of Rj
i in �E j

f��������ig	 Let S
right

f��������i��g be the set of virtual vertices corresponding to

the incoming edges of v in Rj

f��������i��g on the right side of Rj
i in �E j

f��������ig	 See
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Fig	 �	�� for an illustration	 Let Sv
i �� fvig� where vi is the single representative

of v in Rj
i 	 Replacing in 	f��������ig the vertex v by the set of vertices S left

f��������i��g �

Sv
i � Sright

f��������i��g we get a permutation �	f��������ig that witnesses a level planar

embedding �E j

f��������ig of �Rj

f��������ig	

v
S left

f������� �i��g

��z� ��z�

Sright

f������� �i��g

v

Rj
i Rj

i

Figure �	��� Illustration of the proof of Lemma �	��	 Rj
i is a singular form	

The incoming edges are partitioned into sets S left

f��������i��g� S
right

f��������i��g and

the edges belonging to Rj
i 	

The witness �	f��������ig can be written as �	af��������ig�	
b
f��������ig�	

c
f��������ig where

�	af��������ig ends with S left

f��������i��g� �	bf��������ig � fvig and� �	cf��������ig starts with

Sright

f��������i��g	 Merging the set of vertices S left

f��������i��g and Sright

f��������i��g the form

Rj

f��������i��g is constructed	 By induction� a permutation 	af��������ig	
c
f��������ig �

PERM�T �Rj

f��������i��g�� is obtained by replacing in �	af��������ig�	
c
f��������ig the sets

S left

f��������i��g and Sright

f��������i��g by the single representative vf��������i��g	 Since after
replacing vf��������i��g by vf��������ig we have 	f��������ig � 	af��������ig	

c
f��������ig this im�

plies that we need to show T �Rj

f��������ig� � T �Rj

f��������i��g�	

Let v�f��������i��g be the rightmost virtual vertex of S left

f��������i��g� and let v��f��������i��g

be the leftmost virtual vertex of Sright

f��������i��g	 Since the embedding of �Rj

f��������ig is
level planar� the following inequality must hold	

ML�v�f��������i��g� v
��
f��������i��g� � LL�T �Rj

i �� �

Two possible subcases apply	

i	 Rj
i is embedded into an interior face of Rj

f��������i��g	 Since vf��������i��g is a cut

vertex in Rj

f��������i��g� with the cut components being Rj
�� R

j
�� � � � � R

j
i��� the

form Rj
i is embedded into an interior face of a form Rj

l � l � f�� 
� � � � � i	�g	
Thus the virtual vertices v�f��������i��g� and v��f��������i��g correspond to edges of

Rj
l 	 Let X be the smallest common ancestor of v�f��������i��g and v

��
f��������i��g in
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T �Rj
l �	 If X is a P �node we have by proposition �	� for the PML�value of

the single representative vl of R
j
l

PML�vl� � ML�X� � ML�v�f��������i��g� v
��
f��������i��g� �

If X is a Q�node� and X � and X �� are the children of X with v�f��������i��g and
v��f��������i��g in their frontier� respectively� we have by proposition �	� for the

QML�value of the single representative vl of R
j
l

QML�vl� � ML�X �� X ��� � ML�v�f��������i��g� v
��
f��������i��g� �

By construction of the function UPDATE it follows that

minfQML�vf��������i��g��PML�vf��������i��g�g � PML�vl�

or

minfQML�vf��������i��g��PML�vf��������i��g�g � QML�vl� �

and thus INSERT �does nothing�	

ii	 Rj
i is embedded into a cavity of Rj

f��������i��g	 Thus i must be at least ��

otherwise no v�cavity exists in Rj

f��������i��g	 By assumption� we have

LL�Rj
i��� � LL�Rj

i��� � LL�Rj
i � �

Let X be the root of the pertinent subtree when v�merging Rj
i�� into

Rj

f��������i��g	 If X is a P �node� we have by construction ML�X� �

LL�T �Rj
i����	 IfX is a Q�node with pertinent adjacent children Y and Z� we

have by construction that ML�Y� Z� � LL�T �Rj
i����	 Let h denote ML�X�

or ML�Y� Z�� respectively	 Then we have by construction of the function
UPDATE that

minfQML�vf��������i��g��PML�vf��������i��g�g � h � LL�Rj
i��� � LL�Rj

i � �

Thus� again� INSERT �does nothing�� and the tree T �Rj

f��������i��g� is left un�
changed	

�b� Both sets of incoming edges of v corresponding to Sv
f��������i��g and Sv

i form
a consecutive sequence within the clockwise order of incoming edges of v in
E j

f��������ig	 The result follows analogously to the proof of the case S
v

i �� �� with

�	bf��������ig � Sv
i 	

If the PQ�trees of several reduced extended forms Rj
i � i � �� 
� � � � � p� have been v�merged�

the new PQ�tree T may contain several leaves labeled by the same w �� v	 The following
lemma shows that the reduction of these leaves constructs a PQ�tree that represents all
level planar embeddings of the subgraph induced by the vertices

Sp

i�� V �Rj
i �	
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Lemma ����� Let G� Rj
�� R

j
�� � � � � R

j
p� and the vertex v be de�ned as in Lemma ��	�� Let

the reduced forms Rj
�� R

j
�� � � � � R

j
p� and the v�merged form Rj

f��������pg be level planar� Let

T �Rj

f��������pg� be the PQ�tree constructed as described in the second merge phase of CHECK�

LEVEL� representing all level planar embeddings of Rj

f��������pg�

Let F be the component constructed by identifying for all w � V j�� all virtual vertices
with the label w to a single vertex w� Let T �F � be the PQ�tree constructed as described
in the second merge phase of CHECK�LEVEL� by reducing in T �Rj

f��������pg� all leaves with

a common label w� Then PERM�T �F �� is exactly the set of permutations of level��j � ��
vertices that appear in level planar embeddings of F �

Proof� We �rst show that T �F � represents level planar embeddings of F 	 According to
Lemma �	��� T �Rj

f��������ig� represents all level planar embeddings of Rj

f��������ig	 Applying the

function REDUCE with respect to the leaves labeled w � V j��� w �� v� creates either a
PQ�tree �T �Rj

f��������ig� such that for every w the vertices of
S

i�f��������pg S
w
i occupy consec�

utive positions or an empty PQ�tree	 If �T �Rj

f��������ig� is not the empty PQ�tree� we have

that PERM� �T �Rj

f��������ig�� � PERM�T �Rj

f��������ig�� represents all level planar embeddings

of Rj

f��������ig such that all leaves with the same label form a consecutive subsequence	 Iden�

tifying all leaves with the same label w to one leaf� a PQ�tree T �F � is constructed that
represents level planar embeddings of F 	

We now get to the �only if� part� showing that for any level planar embedding E j
F � the

witness 	 of E j
F is in PERM�T �F ��	 The idea is to transform the level planar embedding

E j
F into a level planar embedding of Rj

f��������ig	 The transformation replaces in E j
F every

vertex w � V j��� w �� v� by a sequence of virtual vertices	 We associate every virtual
vertex of w with one of the reduced extended forms Rj

i that have been v�merged into
Rj

f��������ig if this reduced extended form was adjacent to w	 However� in order to perform
this transformation� we �rst need to show that the incoming edges of w that are associated
with Rj

i appear consecutively around w in E j
F 	

Let q denote the number of level��j � �� vertices of F 	 Let 	 � #w�� w�� � � � � wq$ be the
witness of the embedding E j

F 	 We �rst show that for every vertex wi �� v� i � �� 
� � � � � q�
the incoming edges of wi that belong to a reduced extended form Rj

l � l � f�� 
� � � � � pg�
appear consecutively in the clockwise order of incoming edges of wi in the embedding E j

F 	
The following two cases may occur	

�	 All Rj
�� R

j
�� � � � � R

j
p are primary	

Let Rj
y and Rj

z y� z � f�� 
� � � � � pg� y �� z� be two reduced extended forms with
a �j � ���level vertex x	 Let y�� y�� � � � � yc� c 
 � be the set of level�j neighbors of
x in Rj

y and let z�� z�� � � � � zd� d 
 
� be the set of level�j neighbors of x in Rj
z	

Assume that in the clockwise order of neighbors of x in the level planar embedding
of E j

F a vertex yl � fy�� y�� � � � � ycg appears between the vertices za and zb with
za� zb � fz�� z�� � � � � zdg� za �� zb	 Since R

j
z is primary� there exists a path Pz in Rj

z
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connecting the vertices za and zb neither using x nor v	 Since Rj
y is primary and

connected� there exists a path Py in Rj
y connecting the vertices yl and v not using x	

Both paths cross each other but have no vertex in common� a contradiction to the
level planar embedding E j

F 	 See Fig	 �	�� for illustration	

x v

Py

za yl zb

Pz

Figure �	��� Illustration of the proof of Lemma �	
�	 If in E j
F the sequence

of incoming edges of x belonging to Rj
z is separated by some edge �yl� x�

with yl �� V �Rj
z� two vertex disjoint paths exist that cross each other	


	 At least one Rj
i is secondary	

Let Rj
i � fRj

�� R
j
�� � � � � R

j
pg be a secondary reduced extended form	 Thus there ex�

ist vertices x�� x�� � � � � xl � fw�� w�� � � � � wqg such that Rj
i is xi�connected for all

i � �� 
� � � � � l� �l 
 ��	 The fact that Rj
i is xi�connected implies that all forms

having a virtual vertex labeled xi in their frontier have been xi�merged into Rj
i in an

earlier step	 Therefore� Rj
i is the only reduced extended component that contains the

vertices x�� x�� � � � � xl on level j � �	 Hence the incoming edges of xi� i � �� 
� � � � � l�
corresponding to Rj

i form a consecutive sequence in the clockwise order	 For all other
vertices fw�� w�� � � � � wqg 	 fx�� x�� � � � � xlg the same argument as in the �rst case
applies	

We construct from E j
F an embedding E �	 Introduce for every reduced extended form Rj

l �
l � f�� 
� � � � � pg and for every vertex wi �� v� i � �� 
� � � � � q� a vertex wl

i if S
wi

l �� �	 Replace
each vertex wi �� v by a sequence of virtual vertices fwl

i j S
wi

l �� �� � � l � pg� such that wl
i

is adjacent to the same vertices as wi in Rj
l 	 We do not change the order of the incoming

edges of wi� and label each vertex wl
i with wi	 See for an illustration the example shown in

Fig	 �	�
	

Since the incoming edges of wi that correspond to a reduced extended form Rj
l appear con�

secutively around wi� the embedding E � is level planar	 Furthermore� the graph correspond�
ing to E � is identical to Rj

f��������ig� and we have by assumption that the witness 	� of E � is in

PERM�T �Rj

f��������ig��	 Since the witness 	 arises from 	� by identifying all �consecutive� ver�

tices with a common label w � V j��� we have by construction that 	 � PERM�T �F ��	
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z �� �
� Rj

� � Rj
� � Rj

�
z �� � z �� �

wi w�
iw�

i w�
i

Figure �	�
� Illustration of the proof of Lemma �	
�	 For the forms Rj
��

Rj
�� and Rj

� we introduce virtual vertices w�
i � w

�
i � and w�

i 	 We replace wi

by the sequence of virtual vertices� not reordering the incoming edges of
wi	

Corollary ����� Let G � �V�E� be a level graph with k � � levels� Let F j
i � i �

f�� 
� � � � � mjg� be an arbitrary component of Gj� There exists a PQ�tree T �Rj
i � representing

all level planar embeddings of F j
i �

Proof� This follows immediately from Lemma �	� and the Lemmas �	��� �	��� and �	
� by
an inductive argument	

The supposition of Corollary �	
� does not require that G is level planar	 In case that G is
not level planar� there exists a level j � k and a component F j

i � i � f�� 
� � � � � mjg� of G
j

such that F j
i is not level planar and the corresponding PQ�tree is the empty tree	

Theorem ����� The algorithm LEVEL�PLANARITY�TEST tests a proper level graph
G � �V�E� for level planarity�

Proof� Clear by Lemmas �	��� �	��� and �	
�	

��	 Bounding the Number of Reductions

When considering the algorithm LEVEL�PLANARITY�TEST� the interesting question
comes up� how often the PQ�tree function REDUCE is called	 Obviously� the number of
calls for REDUCE in the �rst reduction phase is bounded by m and therefore in O�n��
while the number of calls of REDUCE performed upon a successful INSERT operation
is bounded by s 	 �� where s denotes the number of sources of G	 But how many extra
REDUCE operations have to be executed in the second reduction phase% The following
lemma will show that the number of these extra calls is also bounded by s 	 �	 We note
that this is not a trivial result� as has been stated by Heath and Pemmaraju ������	 They
observe that only one extra reduction is possible after every INSERT operation	 This is
only true for the �rst INSERT operation at a vertex v	 If more forms have to be merged�
their observation is not true in general	
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The next two lemmas show that if the components are merged according to their size�
the number of extra REDUCE operations per INSERT operation is bounded by �	 This
however� is not true if the order of merge operations is changed	 The �rst lemma shows a
technical result needed in the proof of Lemma �	
� that states the �nal result	

Lemma ����� Let Rj
i � � � j � k	 �� � � i � mj� be an arbitrary reduced extended form�

Let w be an arbitrary level�l vertex� � � l � j� of Rj
i and let v be an arbitrary level��j � ��

vertex in Rj
i � Then one of the following two conditions holds�

	� There exists a path P connecting w and v such that lev�u� � j � � for every vertex
u �� v on P �


� There exists a path P � connecting w and v such that for every vertex u �� v on P � the
following condition holds�

lev�u� � j � � if and only if Rj
i is u�connected�

Proof� Since Rj
i is connected there exists a path connecting w and v	 Assume that there is

no path P connecting w and v such that the �rst condition is satis�ed	 Hence� a path P �

exists traversing at least one vertex u �� v such that lev�u� � j � � and u is a cut vertex	
Hence removing u separates Rj

i into several components� all being adjacent to the vertex
u	 Thus these components have been merged at vertex u to Rj

i 	

Assume now that there exists a vertex u� � P � with u� �� v and lev�u�� � j � � but Rj
i

is u��unconnected	 Hence u� is not a cut vertex	 Let �y� u�� and �u�� z� be the two edges of
the path incident to u�	 Since u� is not a cut vertex� there exists a path P z

y connecting y

and z using only vertices in
Sj

l�� V
l	 By successively replacing for every level j � ��vertex

y on P � the path P � by the symmetric di�erence �P � 	 P z
y � � �P z

y 	 P ��� we get a path P ��

connecting w and v such that for every vertex u � P with lev�u� � j � � we have that Rj
i

is u�connected	

Lemma ����� Let G be a level planar graph� Let Rj
�� R

j
�� � � � � R

j
p� F � and the vertex v be

de�ned as in Lemma ��
�� Let T �Rj

f��������pg� be the PQ�tree constructed as described in
the second merge phase of CHECK�LEVEL� representing all level planar embeddings of
Rj

f��������pg� and let T �F � be the PQ�tree constructed as described in the second merge phase

of CHECK�LEVEL� by reducing in T �Rj

f��������pg� all leaves with a common label w�

Then at most p	 � calls for the function REDUCE are necessary to construct T �F � from
T �Rj

f��������pg��

Proof� We show that if the forms Rj
�� R

j
�� � � � � R

j
p �and their corresponding PQ�trees� are

v�merged according to their size� there can be at most one extra call for the function
REDUCE after one merge operation	 For simplicity� we prove this only for the �rst v�
merge operation of Rj

� and Rj
�	 At the end of the proof we show how to obtain the same

results for a v�merge operation of Rj

f��������l��g and Rj
l 	
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Let T �Rj
�� and T �Rj

�� be the PQ�trees corresponding to Rj
� and Rj

�	 By assumption we
have LL�Rj

�� � LL�Rj
��	 Assume that there exist virtual vertices with label v� x and y in

Rj
� and Rj

� on level j � �	 Let v�� x� and y� be the virtual vertices with labels v� x� and
y� respectively� in Rj

�	 Let v�� x� and y� be the virtual vertices with labels v� x� and y�
respectively� in Rj

�	 Let S
v

� be the set of virtual vertices of Rj
� except for the vertex v�	

According to Lemma �	��� the set S
v

� forms a consecutive sequence in every level planar
embedding of Rj

f���g and the vertex v� must be placed next to S
v

�	 Let q � jS
v

�j� and

S
v

� � fw�� w�� � � � � wqg	 Let x� � w� and y� � w� for some w�� w� � S
v

�� � � � � � � q�
and let without loss of generality

#v� w�� w�� � � � � w���� x�� w���� � � � � w���� y�� w���� � � � � wq$

be a witness for a level planar embedding of Rj
�	 For the vertices x� and y�� there exist

paths Px� and Py� such that Px� connects v� and x� and Py� connects v� and y�	 The paths
Px� and Py� can be constructed such that there exists a vertex w � Px� �Py�� and splitting
both paths at vertex w �see Fig	 �	�� for an illustration� we get

 P v�
x�
� Px� connecting the vertices v� and w�

 Pw
x�
� Px� connecting the vertices w and x��

 P v�
y�
� Py� connecting the vertices v� and w�

 Pw
y�
� Py� connecting the vertices w and y��

 P v�
x�

and P v�
y�

are identical� and

 Pw
x�

and Pw
y�

are disjoint except for the vertex w	

y�x�

w

Pw
y�

Pw
x�

v�

P v�
x�

� P v�
y�

Figure �	��� Illustration to the proof of Lemma �	
�	 The path Px� is
drawn as thin black line	 The path Py� is drawn as thick grey line	

The paths Px� and Py� can be constructed according to Lemma �	
� such that one of the
following conditions holds for every path P�� 
 � fx�� y�g	

�	 For every vertex u �� 
� u �� v� on the path P�� the inequality lev�u� � j holds	
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	 If a vertex u �� 
� u �� v� on the path P� exists such that lev�u� � j � � holds� then
Rj

� is u�connected	

Let ux be the �rst vertex on the path Px� from v� to x� such that lev�ux� � j � � and let
uy be the �rst vertex on the path Py� from v� to y� such that lev�uy� � j � �	 Notice that
if for every vertex u on Px� 	fv�� x�g� or on Py� 	fv�� y�g the inequality lev�u� � j holds�
then ux � x�� or uy � y�� respectively	

Let z� be a vertex on Px� or Py� such that for every vertex a � Px� � Py� the inequality
lev�z�� � lev�a� holds	 Since LL�Rj

�� � LL�Rj
��� there exists a vertex z� in R

j
� such that the

inequality lev�z�� � lev�z�� holds	 There exists a path Pv� connecting z� and v�	 Since R
j
� is

v�unconnected� there exists path a Px� connecting z� and x� and a path Py� connecting z�
and y� such that both paths Px� and Py� do not traverse v�	 According to Lemma �	
� we
can construct every path P�� 
 � fv�� x�� y�g such that one of following conditions holds	

�	 For every vertex u �� 
 on the path P�� the inequality lev�u� � j holds	


	 If a vertex u �� 
 on the path P� exists such that lev�u� � j � � holds� then Rj
� is

u�connected	

Assume now that the path Px� or Py� traverses a level��j��� vertex u with the same label
as uy or ux	 By construction� Rj

� must be u�connected	 This implies that Rj
� and Rj

� have
been merged at u in an earlier iteration	 Hence we may assume that the paths Px� and Py�

do not traverse a level��j � �� vertex u with the same label as ux or uy	

We distinguish the following two cases	

�	 ux �� uy

Let P �
y�
be the partial path of Py� from v� to uy	 By construction the path P �

y�
connects

the level��j � �� vertices v� and uy traversing only vertices a � P �
y�

with lev�a� � j	
By construction the paths Px� and P �

y�
are disjoint but do cross each other when

merging the vertices labeled x� y� and v	 Hence G is not be level planar� which is a
contradiction	 See Fig	 �	�� for an illustration	


	 ux � uy

From ux � uy it follows that ux �� x� and uy �� y�	 Otherwise� Rj
� would be x� or

y�connected and Rj
� and Rj

� would have been merged at the vertex x or y �rst	 By
construction the paths Px� and Py� are disjoint but do cross each other when merging
the vertices labeled v� x and y	 Hence G is not level planar� which is a contradiction	
See Fig	 �	�� as an illustration	

Now� let vl��� xl�� and yl�� be virtual vertices with labels v� x� and y� respectively� in
Rj

f��������l��g� � � l � p	 Let vl� xl� and yl be virtual vertices with labels v� x� and y�

respectively� in Rj
l 	 For every vertex xl and yl� paths Pxl and Pyl are constructed analogously
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w

v ux x uy y

z�

Px�

z�

P �
y�

Figure �	��� Illustration to the proof of Lemma �	
�	 Case ux �� uy	 The
fat line shows the path from the vertex labeled v to uy that is crossed by
Px�	

to the paths of Rj
�� thereby using the fact that according to Lemma �	�� the set of virtual

vertices of Rj
l form a consecutive sequence in all level planar embeddings of Rj

f��������lg� and
the vertex labeled v is the endmost vertex in the sequence	

Let zl be a vertex on Pxl or Pyl such that for every vertex a � Pxl � Pyl the inequality
lev�zl� � lev�a� holds	 Since LL�Rj

�� � LL�Rj

f���g� � � � � � LL�Rj

f��������l��g� � LL�Rj
l �� there

exist vertices zv� zx� and zy in Rj

f��������l��g such that the inequalities

lev�zv� � lev�zl� �

lev�zy� � lev�zl� �

lev�zx� � lev�zl�

hold such that there exists a path Pzv connecting zv and vl��� a path Pzx connecting zx
and xl��� a path Pzy connecting zy to yl��� and the paths Pzx and Pzy do not traverse v	

Analogously to the case of Rj
� we then construct a contradiction	

It follows that we have for every merge operation at most one extra call of the function
REDUCE� yielding a total number of at most p	 � extra function calls	

We note that the usage of the result of Lemma �	�� is crucial for Lemma �	
�	 If the
reduced extended forms are not v�merged according to their sizes� and thus Lemma �	��
does not hold� there might exist an arbitrary number of vertices that can be identi�ed after
a successful v�merge operation	 The number of extra calls of the function REDUCE then
may exceed one per merge operation	 For the algorithm LEVEL�PLANARITY�TEST the
Lemma �	
� immediately yields the following Corollary	
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z�

Px�

Py�

w

yx

z�

v ux

Figure �	��� Illustration to the proof of Lemma �	
�	 Case ux � uy	 The
fat line shows the path from the vertex labeled v to the vertex labeled y
that is crossed by Px�	

Corollary ���	� Let G be a level graph with k � � levels� Let r be the number of calls of
the function REDUCE� performed by LEVEL�PLANARITY�TEST on the graph G� Then
r � O�n��

The proof of Lemma �	
� reveals that if two PQ�trees are v�merged� obeying the order of
merging according to their sizes� they both may have at most one leaf with the same label
w �� v in their frontier	 If both trees have a third leaf with similar label in their frontier�
the graph is not level planar	

��
 Proving O�n log n� Running Time

After proving the correctness of the algorithm� we shall now determine its running time	
The following theorem shows that LEVEL�PLANARITY�TEST can be implemented such
that the running time is in O�n logn�	 It turns out that all �dicult� operations such
as reducing and merging can be performed in a total O�n� time	 The linear�logarithmic
running time is created by update operations on the leaves after PQ�trees have been
merged	

Theorem ���
� The algorithm LEVEL�PLANARITY�TEST can be implemented� such
that the running time for proper level graphs is in O�n logn��

Proof� The linear�logarithmic running time follows from an amortized analysis	 Let s de�
note the number of sources of G	 Due to Corollary 
	
 we may assume that m � �n 	 �
holds	 First� the number of operations that is performed in all calls of the function INSERT
is proven to be in O�n�	 As has been explained in Section �	�� an ecient implementation
of PQ�trees implies that not every node of a PQ�tree has a valid parent pointer	 Only
children of P �nodes and the endmost children of Q�nodes have a pointer to their parents	
The function INSERT traverses the path from the pertinent leaf towards the root of the
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PQ�tree Tlarge of the higher form� in order to �nd an appropriate position to place the
smaller PQ�tree Tsmall into the larger one	 Thus INSERT uses existing parent pointers	 We
show that if INSERT detects a node with no parent pointer� and no appropriate position
in Tlarge has been found for Tsmall yet� the graph G is not level planar	

During the application of INSERT� ML�values of the nodes have to be checked	 Since every
child of a P �node X has a pointer to its parent� the ML�value of X is stored directly at X	
The ML�values between the children of a Q�node Y are not stored at Y itself but stored
at the children	 Hence� no parent pointer is needed for accessing the ML�value between
two sibling children of a Q�node	 Assume now that INSERT passes a node X � that has no
pointer to its parent X	 Then X must be a Q�node and X � is not an endmost child of X	 If
INSERT does not succeed in placing Tsmall next to X

� �which implies that the ML�values of
X and its direct siblings are equal or larger than LL�Tsmall �� the graph is not level planar�
placing Tsmall next to X creates crossings� and �nding an appropriate place further up the
tree will construct a PQ�tree Tmerge where in all permissible permutations the pertinent
leaves of Tlarge are separated by the endmost children of X from the pertinent leaves of
Tsmall 	

Heath and Pemmaraju ������ ����� showed that the overall number of nodes traversed
by INSERT does not exceed O�n�	 We cite their proof� since it contains valid information
that is needed to estimate the number of steps performed by all calls of the function
REDUCE	 Furthermore we complete the proof by integrating the analysis of the data
structure PQ�tree	 Since LEVEL�PLANARITY�TEST stops traversing Tlarge every time it
detects a node without a valid parent pointer� the number of nodes that have to be visited
in Tlarge is proportional to the height of the form Fsmall corresponding to Tsmall 	 Let Flarge be
the form corresponding to Tlarge 	 There exists a path in Flarge that corresponds to the path
in Tlarge traversed by INSERT	 We estimate how often an edge in G can be traversed by
such paths	 Every edge e belongs to the boundary of at most two faces	 Traversing a path
P from a lowest level j to a level l� � � l � j� INSERT searches for a place to insert the
smaller component on one side of the path P 	 After successfully inserting the component�
the corresponding new PQ�tree is reduced� and the pertinent vertices are �nally merged
into one vertex in the merged form	 Hence� INSERT is not able to place any other form
on the same side of P where Fsmall has been placed �except for singular forms that require
only constant time when inserted into a nonsingular form�	 Thus� every edge is traversed
at most twice by such paths	 Hence� the total number of nodes traversed by all calls of
INSERT is bounded by m � O�n�	

With the analysis of the merge operations� Heath and Pemmaraju ������ ����� �nish their
proof on the claimed linear running time	 But this is not sucient since update operations
have not been considered	 We now show that the accumulated running time of all calls of
the function REDUCE is linear	 According to Theorems �	� and �	�� the overall time needed
by the calls of REDUCE for all calls in the �rst reduction phase during all executions of
CHECK�LEVEL is in O�n�	

We now determine the number of operations needed by all calls of REDUCE during the
second phase	 Since the number of leaves labeled v that have to be reduced after a v�merge
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operation is exactly two� the number of nodes traversed by REDUCE is bounded by the
height of Tsmall 	 The overall time needed for these function calls is again in O�n�	 According
to Lemma �	
� there is at most one extra call for the function REDUCE for every call
of the function INSERT to reduce leaves labeled w �� v	 Thus the overall time needed by
these calls of REDUCE is also in O�n�	

It follows that the running time of all calls of the function REDUCE and all calls of the
function INSERT is in O�n�	 Every time PQ�trees have to be merged� the PQ�trees have
to be sorted by their sizes	 Since every merge operation reduces the number of PQ�trees
by one� the total cost of sorting the PQ�trees is in O�s�� applying bucket sort algorithms
�see e	g	 Cormen et al� �������	

However� the maintenance of the PQ�trees is more expensive	 The merge operations are
accompanied by update operations that sum up to linear�logarithmic runtime	 We note that
the analysis of these necessary updates has not been performed by Heath and Pemmaraju
������ �����	 Leaves need to know to which PQ�tree they belong to since they need to
access information such as the LL�value of the corresponding form	 Furthermore� after two
PQ�trees Ti and Tl have been v�merged� leaves labeled w �� v in both PQ�trees have to
be detected and reduced	 Thus we have to compare frontier�Ti� and frontier�Tl� for leaves
with a same label� which sums up to O�m logm� steps when scanning and updating the
smaller set of frontier�Ti� and frontier�Tl�	 Hence� the following running time is obtained�

O�n� s�m logm��

Since m is bounded by n and s � n� the running time of LEVEL�PLANARITY�TEST can
be bounded by O�n logn�	

The next section discusses how the second reduction phase can be modi�ed in order to
obtain even linear running time for the level planarity test	

��� Improving to O�n� Running Time

As has been shown in the previous section� all operations can be performed using only linear
time except the update operations	 Two strategies are combined in the second reduction
phase in order to achieve linear running time	

�i� We avoid updates of the leaves by showing how necessary information can be obtained
when needed	

�ii� We avoid scanning for leaves with same label w �� v after a v�merge operation	

The previous approach made sure that after v�merging several PQ�trees� the new PQ�tree
indeed represents all embeddings of its corresponding reduced extended form	 This was
obtained by reducing all leaves labeled w �� v in the new PQ�tree	 The new approach does



���� Improving to O�n� Running Time ���

not reduce any set of leaves labeled w �� v	 They are reduced only if necessary	 In case
that PQ�trees have to be w�merged� w �� v� in a subsequent merge operation� we �rst
reduce in every PQ�tree all leaves labeled w� replacing them by a single representative and
then continue w�merging the PQ�trees	 Thus� the new approach does not construct proper
reduced extended forms when v�merging reduced extended forms	 Such a reduced extended
form� where not all virtual vertices with the same label are identi�ed� is called sloppy 	

The results of Section �	� imply that the vertices of level j��� � � j � k� may be reduced in
any arbitrary order	 Thus we may assume that the vertices of V j�� are numbered arbitrarily
as v�� v�� � � � � vjV

j��j	 The PQ�trees are merged according to that numbering of the vertices	

If the leaves are not updated after merge operations� we need to discuss how to �nd out to
which PQ�tree they belong to	 Consider a set of leaves labeled by vi� 
 � i � jV j��j	 Some
of the leaves may have belonged to a PQ�tree T that has been vl�merged� � � l � i� into
another PQ�tree	 A quick solution for obtaining the update information is the application
of a disjoint set forest �see e	g	 Cormen et al� ������� where every set represents all PQ�
trees that have been merged into another PQ�tree	 Since each PQ�tree T is unique� the
disjoint set forest can be implemented keeping a unique identi�cation number for each tree
using the well known operations MakeSet� FindSet and Union	 This is easy to implement
but yields only a O�n
�m�n�� time algorithm �with 
�m�n� being the inverse Ackermann
function�	 Thus maintaining the necessary information via dynamic set operations improves
the running time but is still not linear	 The following lemma �nally leads to a linear time
algorithm	

Lemma ����� Let T� and T� be two PQ�trees such that there exists a leaf v� � frontier�T��
labeled v and a leaf v� � frontier�T�� labeled v� Assume further that LL�T�� � LL�T�� and
let X� denote the root of T� and let T �

� denote the tree that is constructed by v�merging T�
into T�� Assume further that T �

� is reducible with respect to the leaves labeled v� Then the
function call REDUCE�T �

��S
v
�� traverses every node on the unique path from v� to X� and

every node on this path has a valid parent pointer�

Proof� Consider a node on the path from the leaf v� to X� that has not a valid parent
pointer	 Hence� it must be the interior child of a Q�node	 Thus v� does not form a con�
secutive sequence with v� in any permutation of PERM�T �

��� and T �
� is not reducible with

respect to the leaves labeled v	

This observation leads to the following simple considerations	 For every leaf labeled v in a
tree that corresponds to a smaller form� the information on the LL�value is stored in the
root� and the leaf needs a pointer to the root	 Hence� we go up the tree starting at the leaf
labeled v until we detect the root	 Since the function�call REDUCE also traverses the path
from a leaf labeled v to the root� this extra traversal of the nodes does not have an e�ect
on the asymptotic running time	

However� it is not allowed to traverse the path from a leaf labeled v to the root if the leaf is
contained in the frontier of the PQ�tree with the lower LL�value	 Applying such traversals
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to the PQ�trees with the lower LL�values results in a quadratic running time	 The idea is
to recognize the tree with the lower LL�value implicitly	 In order to insert a tree T� into
another tree T�� we only need to guarantee that LL�T�� � LL�T�� but it is not necessary
to know the precise value of LL�T��	

Figure �	�� visualizes our strategy	 Two PQ�trees T� and T� have to be merged	 For a
reduction of the merged PQ�tree with respect to the leaves v� and v�� we need to traverse
the paths corresponding to the thick grey lines	 Our idea is to traverse these paths upwards
until we detect the root of T� and the node X in T�	

T�

T�

v�

v�

X

Figure �	��� PQ�trees T� and T� have to be merged	 The thick grey lines
denote the paths that are traversed by the function REDUCE	

First of all� we assume for simplicity that no PQ�tree has more than one leaf labeled v in
its frontier� and that the v�merged PQ�trees are reducible	 The idea is to detect for one of
the two leaves its corresponding root while detecting an appropriate node X in the other
tree� such that the tree with larger LL�value can be inserted into the tree with smaller
LL�value at node X	

For comparing nodes in PQ�trees while traversing the paths from the leaves towards the
root their ML�values are used	 The level of a node X in a PQ�tree with respect to v is
de�ned to be the ML�value of X on a path from a leaf labeled v to the root	 Three possible
cases occur when determining the level of a node X	

 If X is a P �node� the level is equal to the ML�value of X	

 If X is an endmost child of a Q�node� the level is equal to the ML�value of the
adjacent sibling of the node X	
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 If X is an interior child of a Q�node� the level is equal to the minimum ML�value of
the two adjacent siblings of the node X	

Starting with two leaves v� and v� labeled v� we go up both paths from the leaves to the
roots simultaneously� stopping as soon as the root of one of the trees has been reached	 We
remember the node X of the tree with the smaller LL�value� and consider the next leaf v�
labeled v	 Starting at v�� we traverse the path to the root� stopping as soon as either the
root of the tree or a node Y on at most the level of X has been reached	 In the latter case
we continue going further up both paths simultaneously� starting at X and Y until a root
node is detected	

The last node in the tree with the lower LL�value is stored in Cmin and the corresponding
ML�value of Cmin is stored in LOWML	 When processing a leaf vi� i � 
� we �rst traverse
the path from vi to the root until either a root node or a node that is on the same level as
Cmin or a lower level is detected	 In the �rst case Cmin and LOWML are left unchanged	 In
the second case we continue traversing both paths simultaneously� stopping when reaching
a root node� updating Cmin and LOWML	 We �rst present the code fragment that handles
the processing of two leaves	 It uses a method GET�NEW�LOW that performs the traversal
of the paths from the leaves to their root	 Using a queue in the code has no speci�c meaning�
only making the code more readable	

let v�� v�� � � � � v� denote the leaves labeled v in V j���
store all v�� v�� � � � � v� in a queue Q�
Cmin �� Q	pop���
LOWML �� j � ��
while Q is not empty do

Cnew �� Q	pop���
GET�NEW�LOW�Cmin�Cnew�LOWML��

The function GET�NEW�LOW uses a trivial function MLVAL that returns the necessary
ML�values according to the rules presented above	 The input values of GET�NEW�LOW
are Cmin storing the node on the lowest detected level� Cnew storing the new leaf that has
to be checked� and LOWML storing the lowest level reached so far	 The values in Cmin

and LOWML may change during the application of GET�NEW�LOW	 The variables Zmin�
Zcand and Znew are used for traversing the paths going further up the trees	 The variable
Zmin holds the currently known node with the lowest ML�value� Zcand is the next candidate
that is checked� and Znew is an ancestor of Zcand	 The procedure starts traversing the path
from Zcand to the root comparing the ML�values of the nodes on the path with the ML�
value of Zmin until an ancestor Znew of Zcand is detected that is either the root of a PQ�tree
or a node with ML�value lower than Zmin	
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void GET�NEW�LOW�Cmin�Cnew�LOWML�
begin

Zmin �� Cmin�
Zcand �� Cnew�
while no root has been reached do

go further up the tree starting at Zcand until either
�	 a node Znew is reached that is the root of a PQ�tree�
or

	 a node Znew is reached such that MLVAL�Znew� � LOWML�

if we stopped due to �	 then
Cmin �� Zmin�
LOWML �� MLVAL�Zmin��
return�

else
Zcand �� Zmin�
Zmin �� Znew�
LOWML �� MLVAL�Znew��

end	

If a node on one of these paths does not have a valid parent pointer� it follows from Lemma
�	
� that the graph is not level planar	 Since every PQ�tree was assumed to have only one
leaf labeled v in its frontier� we now discuss how to handle several leaves labeled v in a
PQ�tree	 When going up the path from a leaf labeled v to the root X of a tree T � we assign
a �ag to every node on this path	 Since all the nodes on the path will be traversed during
the reduction� these �ags can be removed at no additional cost	 If the tree T has another
leaf labeled v� one of the nodes with a �ag is detected when traversing the path towards
the root	 The detection of such a node with a �ag indicates the existence of at least one
other leaf labeled v	 All these leaves belong to the same PQ�tree and are memorized and
reduced before the PQ�trees are v�merged	 The following code fragment presents the new
second reduction phase	

New Second Reduction Phase
for l � � to jV j��j do

for every leaf labeled vl do
�nd the corresponding PQ�tree�

for every found PQ�tree T �Rj
i � do

if Svl

i 
 
 then

if REDUCE�T �Rj
i ��S

vl

i � � � then return ��
else

let �vl be a single representative of Svl

i �

UPDATE�Svl

i ��vl��

REPLACE�Svl

i ��vl��
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reorder indices such that Svl

� � S
vl

� � � � � � S
vl

p �� �� and Svl

p��� S
vl

p��� � � � � S
vl

mj
� ��

let q be the number of vl�singular reduced extended forms�

eliminate all vl�singular Rj
i except for the one with the lowest LL�value�

renumber the remaining Rj
i from � to p	 q � ��

p �� p	 q � ��

sort the Rj
i � such that LL�Rj

�� � LL�Rj
�� � LL�Rj

�� � � � � � LL�Rj
p��

T �Rj
�� �� T �Rj

���
for i � 
 to p do

T �Rj
�� �� INSERT�T �Rj

��� T �R
j
i �� v

l��

Rj
� �� Rj

� �vl R
j
i �

if REDUCE�T �Rj
��� S

vl

� � � � then return ��
else

let �vl be a single representative of Svl

� �

UPDATE�Svl

� ��vl��

REPLACE�Svl

� ��vl��
update the root pointers of the leaves�
add for every source a corresponding PQ�tree to T �Gj��
return T �Gj����

Proving the correctness of this new second reduction phase is quite similar to the proof
given in Section �	�	 Again� we need to show that throughout every iteration the PQ�trees
are correctly maintained and the set of permissible permutations always represents exactly
the set of level planar embeddings of the corresponding form	

In theO�n logn� approach we �rst showed that v�merging a set of PQ�trees indeed produces
a new PQ�tree T that represents all level planar embeddings of its corresponding form	
Then we proved that reducing all leaves labeled w �� v in this new PQ�tree T is performed
correctly	 For proving the correctness of the new approach� we have to prove the correctness
in inversed order	 We �rst show that reducing in a PQ�tree all leaves with the same label
v constructs a PQ�tree that represents all level planar embeddings of the corresponding
sloppy reduced extended form with the virtual vertices labeled v identi�ed	 Then we prove
the correctness of v�merging a set of PQ�trees	

The next lemma proves the reduction of leaves labeled v in a sloppy reduced extended
form to be correct	 Its result corresponds to the result of Lemma �	
�� and most parts of
the proof are analogous	

Lemma ����� Let G � �V�E�� be a level graph with k � � levels� Let vl � V j��� � � j � k�
� � l � jVj��j� Let R

j
i be a level planar sloppy reduced extended form with Svl

i �� � and with
jSw

i j � � for all w � v�� v�� � � � � vl��� Let T �Rj
i � be the corresponding PQ�tree� representing

all level planar embeddings of Rj
i �

Let F be the subgraph constructed from Rj
i by identifying all virtual vertices labeled vl to

a single vertex vl� Let T �F � be the PQ�tree constructed as described in the �new� sec�
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ond merge phase of CHECK�LEVEL� by reducing in T �Rj
i � all leaves labeled vl� Then

PERM�T �F �� is exactly the set of permutations of level��j��� vertices that appear in level
planar embeddings of F �

Proof� The proof of T �F � representing level planar embeddings of F is done analogous to
the proof of Lemma �	
�	

We now prove that for any E j
F a PQ�tree equivalent to T �F � exists that represents exactly

the permutation of the level��j � �� vertices of E j
F 	 The idea is as in Lemma �	
� to

transform the level planar embedding E j
F into a level planar embedding of Rj

i giving us
valid information on the PQ�tree	 The transformation replaces in E j

F the vertex vl by a
sequence of virtual vertices	 We associate every virtual vertex of vl with a reduced extended
form that has been w�merged� w � fv�� v�� � � � � vl��g� into Rj

i in an earlier iteration of the
new second reduction phase	

Let q be the number of level��j��� vertices of F 	 Let 	 � #w�� w�� � � � � wq$ be a witness of the
embedding E j

F 	 F is either primary or it has been constructed by merging sloppy reduced
extended forms at vertices w � fv�� v�� � � � � vl��g	 Hence the set of incoming edges of vl can
be partitioned into sets of incoming edges belonging to the sloppy reduced extended forms
that have been w�merged to create Rj

i 	 Using the same argument as in the proof of Lemma
�	
�� the incoming edges of vl that belong to those sloppy reduced extended forms appear
consecutively in the clockwise order of incoming edges of vl in the embedding E j

F 	

We construct from E j
F an embedding E �	 Introduce for every sloppy reduced extended form

Rj
�� � � f�� 
� � � � � mjg� that has been w�merged into F a vertex vl� if Svl

� �� �	 Replace vl

by a sequence of virtual vertices vl�� such that vl� is adjacent to the same vertices as vl in
Rj

�	 Label each vertex vl� with vl	

Since the incoming edges of vl that correspond to a reduced extended form Rj
� appear

consecutively around vl� the so constructed embedding E � is obviously level planar	 Fur�
thermore the graph corresponding to E � is identical to Rj

i � and we have by assumption that
the witness 	� of E � is in PERM�T �Rj

i ��	 Since the witness 	 arises from 	� by identifying
all �consecutive� leaves labeled vl� we have by construction that 	 � PERM�T �F ��	

The next lemma proves the correctness of v�merging a set of PQ�trees where every PQ�tree
has exactly one leaf labeled v	

Lemma ����� Let G � �V�E� be a level graph with k � � levels� and let vl � V j�� be
a vertex with � � l � jV j��j� Let Rj

�� R
j
�� � � � � R

j
p� p 
 
� be level planar sloppy reduced

extended forms such

�i� Svl

i �� � for all i � f�� 
� � � � � pg� and

�ii� LL�Rj
�� � LL�Rj

�� � LL�Rj
�� � � � � � LL�Rj

p��

Suppose that the PQ�trees T �Rj
��� T �R

j
��� � � � � T �R

j
p� represent all level planar embeddings

of Rj
�� R

j
�� � � � � R

j
p� Let T �R

j

f��������pg� be the PQ�tree constructed as described in the �new�
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second merge phase of CHECK�LEVEL� Then PERM�T �Rj

f��������pg�� is exactly the set of

permutations of level��j � �� vertices that appear in level planar embeddings of Rj

f��������pg�

Proof� The proof is similar to the proof of Lemma �	�� using Lemma �	�� instead of
Lemma �	��	

Theorem ����� The algorithm LEVEL�PLANAR�TEST using the modi�ed second re�
duction phase tests a given proper level graph G � �V�E� for level planarity and can be
implemented such that the running time is in O�n��

Proof� The correctness follows immediately from Lemma �	� and the Lemmas �	��� �	
�
and �	
� by an inductive argument	 For the running time� we have from the discussion above
that the number of steps performed to identify the PQ�trees corresponding to pertinent
leaves labeled v is proportional to the number of steps performed in reducing these leaves	
According to the proof of Theorem �	
� the overall number of steps performed on these
operations is bounded by O�n�	 We now consider the update operations of the leaves that
have to be performed after all merge and reduce operations for a level have been completed	
For every PQ�tree we keep its leaves stored in a doubly linked list	 Every time two PQ�
trees are merged� these lists are merged as well	 This can be done without knowing the
tree with the lower LL�value	 We simply connect the lists at the new single representative
that has to be introduced after the merge operation �followed by a reduction� is complete	
After �nishing all merge and reduce operations we scan for every remaining tree the doubly
linked list of its leaves� doing the necessary updates	 The total cost of these operations is
in O�m�	 Together with the results of Theorem �	
� this yields an O�n� algorithm	

���� Testing Nonproper Level Graphs

For simplicity� we restricted our attention to the level planarity testing of proper level
graphs	 Of course� every nonproper level graph can be transformed into a proper one by
inserting dummy vertices	 This strategy should not be applied since the resulting number
of vertices may be quadratic in the original number of vertices	 The following theorem
shows that our linear time level planarity test works on nonproper level graphs as well as
on proper level graphs	

Theorem ����� The algorithm LEVEL�PLANAR�TEST tests any� not necessarily proper�
level graph G � �V�E� in O�n� time for level planarity�

Proof� Consider a long edge e � �v� w�� v � Vj� w � Vl� � � j � l	� � k	�� traversing one
or more levels	 Thus inserting dummy vertices for e in order to construct a proper hierarchy
would result in a graph G� such that every dummy vertex uei � i � fj � �� j � 
� � � � � l 	 �g
has exactly one incoming edge and one outgoing edge	 However� the reduction of a PQ�tree
T with respect to a set S with jSj � �� replacing the set by a new set S � with jS �j � � is
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trivial and does not modify the PQ�tree	 Hence we do not need to consider the dummy
vertices and therefore do not introduce them at all	 Therefore� with no change our linear
time algorithm correctly tests also nonproper level graphs for level planarity	
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Level Planar Embedding

One can easily obtain the following naive embedding algorithm for level graphs� as has
been suggested by Heath and Pemmaraju ������	 Choose any total order on V k that is
consistent with the set T �Gk�	 Choose then any total order on V k�� that is consistent with
T �Gk��� and that� together with the chosen order of V k implies a level planar embedding
on the subgraph of G induced by V k�� � V k	 Extend this construction one level at a time
until a level planar embedding of G results	

However� to perform this algorithm� it is necessary to keep a copy of the set of PQ�trees
of every level l� � � l � k	 Providing the copies of the PQ�trees easily sums up to an
O�n�� time algorithm for level graphs	 Besides� an appropriate total order of the vertices
of V j� � � j � k� can only be detected by reducing subsets of the leaves of Gj� where the
subsets are induced by the adjacency lists of the vertices of V j��	 More precisely� for every
pair of consecutive edges e� � �v�� w�� e� � �v�� w�� v�� v� � V j� in the adjacency list of
a vertex w � V j��� we have to reduce the set of leaves corresponding to the vertices v��
v� in T �Gj�	 This immediately yields an &�n�� algorithm for nonproper level graphs� with
&�n�� dummy vertices for long edges� since we are forced to consider for every long edge
its exact position on the level that is traversed by the long edge	

In this chapter an algorithm is presented that is based on the level planarity test as it was
given in the previous chapter	 The idea is to augment the graph G to a level planar st�graph
Gst� compute a planar embedding of Gst� and use this planar embedding to construct a level
planar embedding of G	 This approach yields an O�n��time algorithm for �not necessarily
proper� level graphs	

The �rst section presents the concept of the approach	 The second section shows how to
add edges to a level graph without destroying level planarity	 Adding edges is the key
strategy	 The third section proves the correctness of the level planar embedder� and the
fourth section proves the linear time bound	 The chapter closes with some remarks on
possible modi�cations of the level planar embedder	

���
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��� Concept of an Embedding

In order to compute a level planar embedding of a level planar graph G � �V�E� with
a leveling levG� the graph G is augmented to a planar directed acyclic st�graph Gst �
�Vst� Est� with Vst � V �fs� tg and E � Est such that levG induces a topological numbering
of Vst� numbering s with � and t with k � �	 The topological numbering of Gst induces a
leveling of Gst where the vertices of V � Vst are on the same levels as in G	

The graph Gst is embedded planar with the edge �s� t� on the boundary of the outer face	
The level planar embedding is then constructed from the planar embedding	 We present an
algorithm �CONSTRUCT�LEVEL�EMBED� for constructing the level planar embedding
El with respect to the planar embedding Est of Gst	 The algorithm executes once the well�
known depth �rst search �see� e	g	� Cormen et al� �������� starting at the sink t of Gst	
Throughout the algorithm a depth �rst search tree T is constructed only for the analysis
of the algorithm	

El CONSTRUCT�LEVEL�EMBED�Gst�Est�
begin

mark all vertices w � Vst �not visited��
T �� ��
DFS�t��
return El�

end	

void DFS�w�
begin

mark vertex w �visited��
for each incoming edge �v� w� in the clockwise order of Est do

if v has not been visited then
put v at the right end of level levG�v� in El�
add edge �v� w� to T �
DFS�v��

end	

Using the algorithm CONSTRUCT�LEVEL�EMBED� the following important theorem
is shown stating that every level planar graph is a subgraph of a planar st�graph	 The
proof of the theorem reveals that the method CONSTRUCT�LEVEL�EMBED correctly
constructs a level planar embedding	 We construct a proper level graph from Gst in the
proof and show that CONSTRUCT�LEVEL�EMBED performs correctly on this graph	
This is technical and makes the proof more simple	 However� a transformation of Gst

into a proper level graph would lead to quadratic running time	 This will be avoided in
the algorithm and the corollary belonging to this theorem con�rms that CONSTRUCT�
LEVEL�EMBED performs correctly on a �not necessarily proper� level st�graph	
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Theorem 	��� Let G be a level graph with k � N levels and a leveling levG� Then the
following two statements are equivalent�

	� G is level planar�


� G is a subgraph of a planar directed acyclic st�graph Gst � �Vst� Est� with Vst �
V � fs� tg and E � Est� such that levG induces a topological numbering of Vst� by
numbering s with � and t with k � ��

Proof� Di Battista and Tamassia ������ and Kelly ������ show that a directed acyclic
graph is upward planar if and only if it is a subgraph of a planar st�graph	 Given an
upward planar graph� Di Battista and Tamassia ������ construct in their proof a st�graph
by adding two extra vertices s and t and an incoming edge for every source of G and an
outgoing edge for every sink of G	 Since a level planar graph G is trivially an upward
planar graph� the graph Gst constructed this way is a planar st�graph with Vst � V �fs� tg
and E � Est	 Furthermore� they obtain that any topological numbering of G is as well a
topological numbering of Gst due to the �geometrical� construction of Gst	

Now letGst � �Vst� Est� be a planar st�graph such that levG implies a topological numbering
of Gst	 For every long edge e � �v� w� in Gst with levG�w� 	 levG�v� � i � � replace the
edge by a path resulting in a proper level graph	 The proper level graph is obviously a level
planar st�graph	 �As mentioned earlier� this transformation has no e�ect on the running
time	�

According to Platt ������� a planar embedding of Gst with the edge �s� t� on the boundary
of the outer face induces an upward planar embedding of Gst	 Let Est be the upward planar
embedding of Gst	

We show that the algorithm CONSTRUCT�LEVEL�EMBED when applied to the proper
level graph Gst computes a level planar embedding of G	 Clearly� every vertex is accessed
and therefore placed onto its level since the strategy merely applies a depth �rst search
strategy� starting at the only sink of Gst	 It remains to show that the level embedding
constructed this way is level planar	 Assume there exist a pair of edges �u�� v��� �u�� v�� � E
with lev�u�� � lev�u�� � j and u� �j u� and v� �j�� v�	 �Thus v� has been placed onto
level j � � before v� and u� has been placed onto level j before u�	� Let Pv� be the path
from t to v� in the depth �rst search tree T � let Pv� be the path from t to v� in T and let
Pu� be the path from t to u� in T 	 See Fig	 �	� for an illustration	 Let zv� be the vertex
at which path Pv� leaves path Pv� and let zu� be the vertex at which path Pu� leaves path
Pv� 	 We may assume without loss of generality that levG�zu�� � levG�zv��	 Let P

�
u�

be the
subpath of Pu� starting at vertex zu� 	 Let P

�
v�

be the subpath of Pv� starting at vertex zv� 	
Then the paths P �

u�
and P �

v�
are vertex disjoint� except for the vertex zu� if zu� � zv� 	 Thus

combining the paths P �
u�

and P �
v�

together with the path from zv� to zu� in the DFS�tree T
and the edge �u�� v�� yields an undirected cycle C in Gst	 Since Gst is an st�graph� there
exists a directed path P connecting v� and s using u� and P is vertex disjoint from the
cycle C	 Two cases may occur	
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zu� �� v� Then all vertices that dominate v� must lie in the interior of cycle C	 Since s lies
in the exterior of C� the path P must intersect cycle C	 Thus the embedding of Gst

is not planar	 This is a contradiction	

zu� � v� Then the edge �u�� v�� is in P �
u�

and therefore contained in the cycle C	 Thus� all
vertices that dominate v� except u� must be in the interior of cycle C	 Again� the
path P must intersect cycle C	 Thus the embedding of Gst is not planar	 This is a
contradiction as well	

Reconstructing the original graph G from Gst by removing all subdivisions of edges and
removing s and t yields a level planar embedding of G	

zu�

v�

zv�

t

u� u�

s

v�

P �
v�

P �
u�

Figure �	�� Illustration for the proof of Theorem �	�	 Paths on the depth
�rst search tree are drawn fat	 The cycle C is drawn shaded	

The following corollary to the Theorem �	� shows that CONSTRUCT�LEVEL�EMBED
computes a level planar embedding for a �not necessarily proper� level graph in linear
time	 The proof mainly shows that we can avoid transforming the st�graph Gst into a
proper level graph	

Corollary 	��� Let G be a level planar graph with a leveling levG� and Gst � �Vst� Est� be
a planar directed acyclic st�graph with Vst � V � fs� tg and E � Est� such that

�i� every source in G has exactly one incoming edge in Gst�

�ii� every sink in G has exactly one outgoing edge in Gst� and

�iii� levG induces a topological numbering of Gst�

Then CONSTRUCT�LEVEL�EMBED computes a level planar embedding in O�n� time�
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Proof� Clearly� the algorithm terminates within linear time� since the algorithm executes
the depth �rst search once and the number of extra edges jEst	Ej is in O�n�	 Obviously�
a long edge e � Est is in the depth �rst tree if and only if all edges in the subdivision of e
are in the depth �rst search tree	 Thus the correctness of the algorithm follows from the
proof of Theorem �	�	

Using the planar embedding algorithm described in Chiba� Nishizeki� Abe� and Ozawa
������� an upward planar embedding of an st�graph is easily computed	 The nontrivial
part is to construct an st�graph by adding edges to G without destroying level planarity	
First� two vertices s and t are added on extra levels	 Then for every sink of G an outgoing
and every source of G an incoming edge is added without destroying level planarity	 Thus
the embedding algorithm is sketched as follows

�	 Set Gst � G	


	 Add an extra vertex t on an extra level k � � and augment Gst to a hierarchy by
adding an outgoing edge to every sink of G without destroying level planarity	

�	 Add an extra vertex s on an extra level � and augment Gst to an st�graph by adding
the edge �s� t� and an incoming edge to every source of G without destroying the
level planarity	

�	 Compute an upward planar embedding of Gst using the algorithm presented by Chiba
et al� ������	

�	 Construct a level planar embedding of G from the planar embedding of Gst	

The dicult part is obviously to insert edges without destroying level planarity and is
discussed in detail in the next section	

Figures �	
� �	� and �	� demonstrate the strategy of constructing an st�graph from a level
graph	 We consider the level graph G shown in Fig	 �	
 having � levels	 �The same graph
has been displayed already in Fig	 �	

 on Page ��	� The graph G contains six sinks and
�ve sources	 The number of extra edges that we add in order to construct an st�graph is
�
� one for every sink and every source� and the edge �s� t�	

Figure �	� shows the graph G with an extra vertex t on a level � and an extra vertex s
on a level �	 Adding the extra edges that are drawn as thick grey lines to G constructs a
hierarchy	 The involved sinks in G are drawn shaded	

In Fig	 �	� the hierarchy of Fig	 �	� is expanded to an st�graph by adding the edges that
are drawn as thick grey lines �including the edge �s� t��	 Here� the involved sources of G
are drawn shaded	

Once a level graph has been level planar embedded� we want to visualize it by produc�
ing a level planar drawing	 This is very simple for proper graphs	 Assign the vertices of
every level integer x�coordinates according to the permutation that has been computed
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by CONSTRUCT�LEVEL�EMBED� and draw the edges as straight line segments	 This
produces a level planar drawing and after applying some readjustments such a drawing
can be aesthetically pleasing	

�

�

�

�




Figure �	
� A level graph G	
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Figure �	�� A hierarchy constructed from the level graph G of Fig	 �	
	

For level graphs that are not necessarily proper� this approach is not applicable	 It would
be necessary to expand the level graph in horizontal direction for drawing the edges as
straight line segments	 If a lot of long edges exist in the graph� the area that is needed will
be rather large� and the drawings are not aesthetically pleasing	
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Figure �	�� The st�graph constructed from the hierarchy of Fig	 �	�	

However� there is a nice and quick solution to it� using some extra information that is
computed by our level planar embedding algorithm	 Instead of drawing the graph G� we
draw the st�graph Gst� and remove afterwards all edges and the vertices s and t that are
not contained in G	

Drawing st�graphs has been extensively studied recently �see� e	g� Kant ������� Luccio�
Mazzone� and Wong ������� Rosenstiehl and Tarjan ������� Tamassia and Tollis �������
and Tamassia and Tollis �������	 Suitable approaches for drawing the st�graph Gst have
been presented by Di Battista and Tamassia ������ and Di Battista� Tamassia� and Tollis
����
�	 These algorithms construct a planar upward polyline drawing of a planar st�graph
according to a topological numbering of the vertices	 The vertices of the st�graph are
assigned to grid coordinates and the edges are drawn as polygonal chains	 If we assign a
topological numbering to the vertices according to their leveling� the algorithm presented
by Di Battista and Tamassia ������ produces in O�n� time a level planar polyline grid
drawing of Gst such that the number of edge bends is at most �n	 �
 and every edge has
at most two bends	 This approach can be improved to produce in O�n� time a level planar
polyline grid drawing of Gst such that the drawing of Gst has O�n�� area� the number of
edge bends is at most ���n	 ������ and every edge has at most two bends	 Thus once we
have augmented G to the st�graph Gst� we can immediately produce a level planar drawing
of G in O�n� time	
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��� Augmentation

Augmenting a level graph G to an st�graph Gst is divided into two phases	 In the �rst
phase an outgoing edge is added to every sink of G	 Using the same algorithmic concept
as in the �rst phase� an incoming edge is added to every source of G in the second phase	

In order to add an outgoing edge for every sink of G without destroying level planarity�
we need to determine the position of a sink v � V j� j � f�� 
� � � � � k	 �g� in the PQ�trees	
This is done by inserting an indicator as a leaf into the PQ�trees	 The indicator is ignored
throughout the application of the level planarity test and will be removed either with the
leaves corresponding to the incoming edges of some vertex w � V l� l � j� or it can be
found in the �nal PQ�tree	

����� Sink Indicators

The idea of the approach can be explained best by an example	 Figure �	� shows a small
part of a level graph with a sink v � V j and the corresponding part of the PQ�tree	 Since
v is a sink� the leaf corresponding to v will be removed from the PQ�tree before testing
the graph Gj�� for level planarity	 Instead of removing the leaf� the leaf is kept in the tree
ignoring its presence from now on in the PQ�tree	 Such a leaf for keeping the position of
a sink v in a PQ�tree is called a sink indicator and denoted by si�v�	

v

v

Figure �	�� A sink v in a level graph G and the corresponding PQ�tree	

As shown in Fig	 �	� the indicator of v may appear within the sequence of leaves corre�
sponding to incoming edges of a vertex w � V l	 The indicator of v is interpreted as a leaf
corresponding to an edge e � �v� w� and G is augmented by e	 Adding the edge e to G
does not destroy the level planarity and provides an outgoing edge for the sink v	

When replacing a leaf corresponding to a sink by a sink indicator� a P � or Q�node X may
be constructed in the PQ�tree such that frontier�X� consists only of sink indicators	 The
presence of such a node is ignored in the PQ�tree as well	 A node of a PQ�tree is an ignored
node if and only if its frontier contains only sink indicators	 By de�nition� a sink indicator
is also an ignored node	

����� Sink Indicators in Template Reductions

In order to achieve linear time for the level planar embedder� we have to avoid searching
for sink indicators that can be considered for augmentation	 Consequently� only those
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w wv

w

e

v

Figure �	�� Adding an edge e � �v� w� without destroying level planarity	

indicators si�v�� v � V � are considered for augmentation that appear within the pertinent
subtree of a PQ�tree with respect to a vertex w � V 	 We show that every edge added this
way does not destroy level planarity	 The �rst lemma considers sink indicators appearing
within the sequence of pertinent leaves	

Lemma 	��� Let si�v� be a sink indicator of a vertex v � V j� � � j � k� in a PQ�tree T
corresponding to an extended form H� Adding the edge e � �v� w� to G does not destroy
level planarity if one of the following two conditions holds�

�i� si�v� is a descendant of a full node in the pertinent subtree with respect to a vertex
w � V l� j � l � k�

�ii� si�v� is a descendant of a partial Q�node in the pertinent subtree with respect to a
vertex w � V l� j � l � k� and si�v� appears within the pertinent sequence�

Proof� Since si�v� is child of a full node or appears at least within a pertinent sequence
of full nodes� adding the edge e � �v� w� does not destroy level planarity of the reduced
extended form R corresponding to H	 Thus it remains to show that adding the edge has
no e�ect on merge operations	

For every embedding E of R� the edge e is embedded either between two incoming edges
of w or next to the consecutive sequence of incoming edges of w	 If e is embedded between
two incoming edges� the edge e obviously does not a�ect the level planar embedding of any
nonsingular form and u�singular form with u �� w	

If e is embedded next to the consecutive sequence of incoming edges of w� then si�v� must
be a descendant of a full node X	 If X is a P �node� there exists an embedding of R such
that the edge e can be embedded between two incoming edges of w	 Thus adding the edge
does not a�ect the level planar embedding of any nonsingular form and any u�singular
form� with u �� w	

Consider now a full Q�node X	 By construction� si�v� is a descendant leaf at one end of X	
The Q�node X corresponds to a subgraph B	 The vertex v must be on the boundary of the
outer face of the subgraph B and there exists a path P � �v � u�� u�� � � � � u� � w�� � 
 
�
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on the boundary of the outer face of B such that lev�ui� � l for all i � �� 
� � � � � � 	 �	
Thus none of the nodes ui� i � �� 
� � � � � �	 �� is considered for a merge operation	 Hence�
replacing the path P by an edge �v� w� at the boundary of the outer face does not a�ect
the level planar embedding of any nonsingular form and any u�singular form� with u �� w	
Figure �	� illustrates the insertion of an edge e � �v� w� if si�v� is the endmost child of a
Q�node	

���
���
���
���

���
���
���
���

��

w

v

si�v�
w w

Figure �	�� Sink indicator si�v� is an endmost child of a Q�node	 The
path P is drawn shaded� the edge e � �v� w� is drawn as a dotted line	

Considering w�singular forms� we have that adding the edge e produces one more face
but the height of the largest w�cavity or the largest interior face remains valid	 Thus a
w�singular form that has to be embedded within an interior face or within a w�cavity can
be embedded level planar after the insertion of e	

Lemma �	� proves that an edge can be added to the graph without destroying level planarity
if its sink indicator is found in the pertinent subtree	 However� adding edges changes the
structure of the graph and it is therefore not clear if for every sink indicator that is found
in the pertinent subtree an edge can be added without destroying level planarity	 However�
Lemma �	� has been proven in a more general way immediately yielding the following
corollary by applying an inductive argument	

Corollary 	��� Let w � V j��� � � j � k� be a virtual vertex in an extended form Hj
i �

� � i � mj� and let T be the corresponding PQ�tree� Let S � V � � V � � � � � � V j� be a set
of sinks such that for every vertex v � S there exists a sink indicator si�v�� and one of the
following two conditions holds�

�i� si�v� is a descendant of a full node in the pertinent subtree of T with respect to the
vertex w�
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�ii� si�v� is a descendant of a partial Q�node in the pertinent subtree of T with respect to
the vertex w� and si�v� appears within the pertinent sequence�

Then for every v � S the edge �v� w� can be added to G without destroying level planarity�

Proof� By induction on the number of sinks in T � applying Lemma �	�	

Lemma �	� allows us to consider an edge for insertion if a sink indicator is a descendant
of a full node or a descendant of a partial Q�node within the sequence of full children of
the Q�node	 The lemma does not consider a sink indicator si�v� that appears as a child
of a partial Q�node X such that si�v� is a sibling to the pertinent sequence	 Although
the following lemma shows that edges corresponding to sink indicators that are endmost
children at the full end of a singly partial Q�node can be added without destroying level
planarity� the case where sink indicators are between the sequence of full and the sequence
of empty children reveals problems	

Lemma 	�	� Let si�v� be a sink indicator of a vertex v � V j� � � j � k� in a PQ�tree T
and let si�v� be a descendant of an ignored node X that is a child of a singly partial Q�node
Y in the pertinent subtree with respect to a vertex w � V l� j � l � k� If X appears at the
full end of the singly partial Q�node� the edge e � �v� w� can be added without destroying
level planarity�

Proof� Analogous to the proof of Lemma �	� for the case in which si�v� is a descendant of
a full Q�node	

Consider now the situation of an extended reduced form R as shown in Fig	 �	�	 The sink
indicator si�v� is a child of a partial Q�node in the pertinent subtree of some vertex w � V l�
j � l � k� and si�v� is adjacent to a full and an empty node	 Adding the edge e does not
a priori destroy level planarity in R� but it creates a new interior face� such that the large
space between w and the rightmost vertex of the subgraph corresponding to the subtree
rooted at X is destroyed	 Now assume that a nonsingular form R� has to be w�merged
into R� applying merge operation D	 Although the ML�value between the leaf w and the
node X allows us to add the form R� between w and X� there is� due to the insertion of
e� not enough space between w and X	 Hence a crossing is created and a nonlevel planar
graph is constructed as is shown in Fig	 �	�	 Consequently� a sink indicator that is found
to be a sibling of a pertinent sequence and an empty sequence is never considered for edge
augmentation	

By applying the results of Lemmas �	� and �	� during the template matching algorithm�
not all sink indicators are considered for edge insertion	 Some of the indicators remain in
the �nal PQ�tree that represents all possible permutations of vertices of V k in the level
planar embeddings of G	 The following lemma allows us not only to insert edges �w� t� for
every w � V k but also to insert an edge �v� t� for every remaining sink indicator si�v�	
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Figure �	�� A doubly partial Q�node and its corresponding part of the
form R	 The new inserted edge e � �v� w� is drawn as a dotted line	
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Figure �	�� Merging R� into R with the new edge e � �v� w� is not level
planar	

Lemma 	�
� Let si�v� be a sink indicator of a vertex v � V j� � � j � k� If si�v� is in the
�nal PQ�tree T � the edge e � �v� t� can be added without destroying level planarity�

Proof� Adding to every vertex w � V k an edge �w� t� does not a�ect the level planarity of
the graph	 Thus consider testing the level V k�� for level planarity	 Obviously the pertinent
subtree of T is equal to T and applying Corollary �	� proves Lemma �	�	

Since any leaf may eventually turn into a sink indicator� the introduction of the sink
indicators has an e�ect on the templates of Booth and Lueker ������	 Although the general
strategy is to ignore the sink indicators during the template matchings� there are quite a
few problems that come up along with them	 We discuss these problems in Chapter � and
only mention one important feature now	 Consider any of the templates P
� P�� � � � � P�	
These templates process a P �node X with empty� full� and partial children	 Obviously�
all ignored nodes that are children of X are allowed to be permuted into the pertinent
subtree	 Thus the sink indicators in the frontier of these ignored nodes are allowed to
be considered for edge augmentation during the application of the template	 However� the
ignored children can only be considered if all children ofX are traversed in order to �nd the
ignored children	 This in turn implies that all empty children of X have to be traversed as
well	 Since the template matching algorithm of Booth and Lueker ������ does not process
any of the empty children� the traversal of all children of X has to be avoided for run
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time reasons	 Hence� not all of the children of X are scanned	 This is no drawback� since
any of the involved sink indicators will be eventually in a pertinent subtree or in the �nal
PQ�tree� where they �nally will be considered for edge augmentation	

����� Sink Indicators in Merge Operations

While the treatment of sink indicators during the application of the template matching
algorithm is rather easy in principle� this does not hold for merge operations	 We consider
all merge operations and discuss necessary adaptions in order to treat the sink indicators
correctly	

If sink indicators and ignored nodes have to be manipulated correctly during the merge
process� ML�values as they have been introduced for nonignored nodes have to be intro�
duced for ignored nodes as well	 Consider a node X that becomes ignored	 We make the
following conventions	

�i� If X is a child of a P �node Y � the corresponding ML�value for X is ML�Y �	

�ii� If X is a child of a Q�node� we distinguish two cases�

�a� X does not have an adjacent ignored sibling	 Let Z and Y be its direct non�
ignored siblings	 Then we leave the values ML�Z�X� and ML�X� Y � at X� and
replace according to the level planarity test the values ML�Z�X� and ML�X� Y �
by a new value ML�Z� Y � � minfML�Z�X��ML�X� Y �g at Z and Y 	 The case
where X has just one nonignored sibling is solved analogously	

�b� X has adjacent ignored direct siblings	 Let ZI and YI be the next ignored siblings
and let Z and Y be its direct nonignored siblings with Z at the side where ZI is�
and Y at the side where YI is	 Let ML�Z�X� and ML�X� Y � be the ML�values
between Z and X� and X and Y � respectively	 Let ML�ZI� X� be the ML�value
stored at ZI � and let ML�X� YI� be the ML�value stored at YI	 Then we replace
at X the values ML�Z�X� by ML�ZI� X� and ML�X� Y � by ML�X� YI�� and
replace according to the level planarity test the values ML�Z�X� and ML�X� Y �
by a new value ML�Z� Y � � minfML�Z�X��ML�X� Y �g at Z and Y 	 The cases
with only one nonignored or one ignored direct sibling are a handled analogously	

This strategy ensures that nonignored siblings Z and Y �know� the maximal height
of the space between them� while the knowledge about the height of the space between
the sinks and their corresponding indicators is left at the ignored nodes only	

Lemma 	��� Let X be an ignored node that is a child of a Q�node and let MLl and MLr be
the ML�values that have been assigned to X by one of the rules �ii��a� or �ii��b� described
above� Then the values MLl and MLr are valid for X�

Proof� The sink indicators in frontier�X� can be interpreted as leaves corresponding to
long edges	 Thus the ML�values remain valid	
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Lemma 	��� Let X be an ignored node that is a child of a P �node Y � Then the value
ML�Y � is valid for X�

Proof� Analogous to the proof of Lemma �	�	

Suppose now that we have two reduced forms R� and R� and their corresponding trees
T� and T� with LL�T�� � LL�T�� have to be w�merged	 As described in �	�	�� we start
with the leaf labeled w in T� and proceed upwards in T� until a node X � and its parent
X are encountered such that one of the �ve merge conditions as described in Section
�	�	� applies	 The merge operations are discussed in an order according to the diculties
that are encountered when handling involved sink indicators	 Before starting with the less
problematic ones� one more convention is made	 If X is a node in a PQ�tree� RX denotes
the subgraph corresponding to the subtree rooted at the node X	

Merge Operation E

The tree T� is reconstructed by inserting a Q�node X as new root of T� with two children
X � and the root of T�	 The following observation is trivial	

Observation 	��� There is no need to adapt the merge operation E in order to handle
sink indicators correctly�

Merge Operation A

The root of T� is attached as a child to a P �node X of T� thus we have that

ML�X� � LL�T�� �

Obviously� all ignored nodes that are children of X are allowed to be permuted in the
pertinent subtree	 Thus the sink indicators in their frontier are allowed to be considered
for edge augmentation	 However� as already mentioned for the templates P
� P�� � � � � P�
in �	
	
� the ignored children can only be considered if all children of X are traversed in
order to �nd the ignored children	 This implies that all empty children of X have to be
traversed as well� yielding a quadratic time algorithm	 Thus ignored children of X are not
considered for augmentation and we can make following observation	

Observation 	���� There is no need to adapt the merge operation A in order to handle
sink indicators correctly�

Merge Operation D

Let X be a Q�node of T� with ordered children X�� X�� � � � � X�� � � �	 Let X � � X	�
� � � � �� and ML�X	��� X	� � LL�T�� � ML�X	� X	���	 Thus R� has to be nested
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between the subgraphs RX���
and RX�

and the root of T� is attached as a child to the
Q�node X between X	�� and X		

Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes between X	�� and X	 with X	��

and I� being direct siblings� and X	 and I� being direct siblings	 As illustrated in Fig	 �	��
there may exist a � � f�� 
� � � � � �g such that for every sink indicator

si�v� �

��
i��

frontier�Ii� � v �

levw����
i��

V i �

the graph has to be augmented by an edge e � �v� w�	 Adding these edges does not destroy
level planarity	 Furthermore� augmenting the graph G for every si�v� �

S�

i�� frontier�Ii� by

an edge e� � �v� u�� u �
Sk

i�levw� V
i� u �� w destroys level planarity	
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Figure �	��� Merging the form R� into R� using the merge operation D
forces us to augment G by the edges drawn as dotted lines	

Using the following lemma we are able to �nd all the sink indicators that have to be
considered for edge insertion when applying the merge operation D	

Lemma 	���� Let X be a child of a Q�node and let Y be a direct nonignored sibling of X�
Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes between X and Y with X and I�
being direct siblings� and Y and I� being direct siblings� There exists a � � f�� 
� � � � � ���g
such that ML�X� Y � � ML�I���� I��� with I� � X and I��� � Y �

Proof� The lemma follows immediately from Lemma �	�	

For correct handling of the sink indicators while applying the merge operation D we scan
the ignored nodes in reverse order I�� I���� � � � � I�� � 
 �� until we detect a �� � � � � ����
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such that ML�I���� I�� � LL�T��� with I��� � X	 and I� � X	��	 Placing the root of T�
between I��� and I� makes the ignored nodes I� � I���� � � � � I� appearing within the pertinent
subtree	 This allows to augment the graph G by an edge e � �v� w� for every sink indicator
si�v� �

S�

i�� frontier�Ii� during the reduction with respect to w	

Merge Operation C

Let X be a Q�node with ordered children X�� X�� � � � � X�� X
� � X	� � � � � �� and

ML�X	��� X	� � LL�T�� and ML�X	� X	��� � LL�T��	 The node X	 is replaced by a
Q�node Y with two children� X	 and the root of T�	

Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes between X	�� and X	 with
X	�� and I� being direct siblings� and X	 and I� being direct siblings	 Let J�� J�� � � � � J
�
 
 �� be the sequence of ignored nodes between X	 and X	�� with X	 and J� being direct
siblings� and X	�� and J
 being direct siblings	

As illustrated in Fig	 �	�� there may exist a �� � � � � �� such that for every sink indicator

si�v� �

��
i��

frontier�Ii� � v �

levw����
i��

V i �

G has to be augmented by an edge e � �v� w� if R� is embedded between RX���
and RX�
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Figure �	��� Merging the form R� into R� using the merge operation C
and embedding it between RX���

and RX�
forces G to be augmented by

the edges drawn as dotted lines	

As is illustrated in Fig	 �	�
� R� can be embedded between RX�
and RX���

� and there may
exist a �� � � � � � such that for every sink indicator

si�v� �
��
i��

frontier�Ji� � v �

levw����
i��

V i �

G has to be augmented by an edge e � �v� w�	
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Figure �	�
� Merging the form R� into R� using the merge operation C
and embedding it between RX�

and RX���
forces G to be augmented by

the edges drawn as dotted lines	

It is not possible to consider both sets of ignored nodes for edge augmentation	 Consider
for instance the example shown in Fig	 �	��� where edges for both sets

S�

i�� frontier�Ii�
and

S�

i�� frontier�Ji� have been added� yielding immediately a nonlevel planar graph	

However� deciding which set of sink indicators has to be considered for edge augmentation
is not possible unless X	 is a full node	 Proceeding the level planarity test down the
levels V levw��� to V k may embed the component R� on either of the two sides of RX�

	
Since the side is unknown during the merge operation� we have to keep the a�ected sink
indicators in mind	 Furthermore� we must devise a method that allows to recognize the
correct embedding during subsequent reductions	

The sequences I�� I���� � � � � I� and J�� J�� � � � � J� are called the reference sequence of R�

and denoted by rseq�R��	 We refer to I�� I���� � � � � I� as the left reference sequence of R�

denoted by rseq�R��
left � and to J�� J�� � � � � J� as the right reference sequence denoted by

rseq�R��
right 	 The union

S�

i�� frontier�Ii� �
S�

i�� frontier�Ji� is called the reference set of
R� and denoted by ref�R��	 The left and right reference set ref�R��

left and ref�R��
right �

respectively� are de�ned analogously to the left and right reference sequence	

The following lemma shows that considering both the left and the right reference set for
augmentation is allowed if X	 is a full node	

Lemma 	���� Let X be a Q�node of a PQ�tree T� with ordered children X�� X�� � � � � X��
Let T� be a PQ�tree that is w�merged at X	� � � f�� 
� � � � � �g� and X by the merge operation
C� Let rseq�R��

left be the reference sequence between X	�� and X	� and let rseq�R��
right be

the reference sequence of R� between X	 and X	��� Then ref�R��
left and ref�R��

right both
can be considered for edge augmentation simultaneously if X	 is a full node�
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Figure �	��� Merging the form R� into R� using the merge operation C
does not allow to consider sinks on both sides of RX�

for edge augmen�
tation	 Independently on the chosen embedding of R� there are always
crossings between a path connecting �u and u and the new edges	

Proof� Let X	 be a full node	 Then

RX�
� V levw� � fwg

and no long edge e � �u� u�� with tail u � RX�
traverses level lev�w�	 Thus for every sink

v �
Slevw���

i�� V i corresponding to a sink indicator si�v� � ref�R�� we have that every path
Pv connecting v and w on the boundary of the outer face of R� that does not traverse
RX���

and RX���
uses only vertices

Slevw���
i�� V i	 Hence� an edge �v� w� can be added for

every sink v without destroying level planarity of R�	 It follows that the form constructed
frommergingR� and R� is also level planar	 Furthermore� rseq�R��

left and rseq�R��
right have

been chosen such that the ML�values ML�X	��� X	� and ML�X	� X	��� remain una�ected	
Thus augmenting the graph G by an edge �v� w� for every si�v� � ref�R�� has no e�ect on
subsequent merge operations	

The example in Fig	 �	�� and Fig	 �	�
 is constructed such that the left and the right sets
ref�R��

left and ref�R��
right both can be considered for edge augmentation	

In Section �	
	� a method using a special ignored indicator is developed for deciding which
subset of ref�R�� has to be considered for edge augmentation	 Before continuing with the
algorithmic solution� we �nish by considering the merge operation B where exactly the
same problem occurs as has been encountered for the merge operation C	

Merge Operation B

Let X be a Q�node with ordered children X�� X�� � � � � X�� and let X � � X�� and
ML�X�� X�� � LL�T��	 The node X� is replaced by a Q�node Y having two children�
X� and the root of T�	
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Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes at one end of X with X� and I�
being direct siblings and I� being an endmost child of X	 Let J�� J�� � � � � J
�  
 �� be the
sequence of ignored nodes between X� and X� with X� and J� being direct siblings� and
X� and J
 being direct siblings	

Analogously to the merge operation C� there may exist sink indicators a�ected by merging
R� into R� in both sets I�� I�� � � � � I�� � 
 �� and J�� J�� � � � � J
�  
 �	 Again it is not
possible to decide if the left reference set ref�R��

left or the right reference set ref�R��
right

has to be considered for edge augmentation	

����� Contacts

In order to solve the decision problem of the merge operations B and C� we examine how
R� is �xed to either side of the vertex w � V in a level planar embedding of G	 For the rest
of this subsection we consider two PQ�trees T� and T�� such that T� has been w�merged
into T� using a merge operation B or C	 Let X be the Q�node with children X�� X�� � � � � X��
� 
 
� and let X	� � � f�� 
� � � � � �g� be its child that is replaced by a new Q�node having
two children X	 and the root of T�	 Let RX�

be the subgraph of R� corresponding to the
subtree rooted at X	 before merging R� and R�	 Let RX be the subgraph corresponding
to the subtree rooted at X before merging R� and R�	

De�nition 	���� De�ne �RX to be the set of all vertices u � V such that there exists a
vertex v � RX and a �not necessarily directed� path P connecting u and v not using the
connective cut vertex of X� De�ne further D�RX�

� R�� �
Sk

i�levw� V
i to be the set of

vertices u �
Sk

i�levw� V
i such that the following two conditions hold�

	� There exists a directed path P � �u�� u�� � � � � u� � u�� � � �� with u� � RX�
�R��


� There exists a vertex �u �
Sk

i�levw� V
i and a directed path �P � ��u�� �u�� � � � � �u � �u��

� � �� with �u� � RX�
� R�� such that lev��u� 
 lev�u� and the paths P and �P are

vertex disjoint except for possibly u and �u�

The vertex set D�RX�
�R�� is called dependent set of RX�

�R��

Figure �	�� illustrates di�erent kinds of dependent sets D�RX�
� R��	 The dependent set

D�RX�
�R�� is drawn shaded in all four cases	 The vertex v in all four sub�gures denotes

the connective cut vertex of X	 in Glevw� that allows to reverse the subgraph RX�
� R�

with respect to RX 	

For simplicity� we make the overall assumption for the rest of this section that no vertex u �
D�RX�

�R�� is involved in a merge operation	 This matter is discussed in the next section�
handling concatenations of merge operations	 However� subsequent merge operations to
any other vertex not contained in D�RX�

� R�� are allowed after w�merging R� into R�	
This includes merge operations involving vertices of the subgraph corresponding to the
tree T�� except of course for the dependent set	
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Figure �	���a� illustrates the case� where v is not only a cut vertex in Glevw� but a also a
cut vertex in the graph G	 Consequently� RX�

�R��D�RX�
�R�� will be embedded within

an interior face or the outer face with the option to chose its embedding una�ected from
the embedding of the rest of the graph	 Hence R� may be embedded on an arbitrary side
of RX�

with respect to RX 	
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Figure �	��� The �gure illustrates di�erent dependent sets D�RX�
�R��	

The dependent sets are drawn shaded and path 'P is drawn grey	
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Figure �	���b� illustrates the case� where v is not a cut vertex in the graph G but there
exists a vertex u � D�RX�

� R�� such that u and v form a split pair and we have that

lev��u� � lev�u� if �u � D�RX�
� R��	 fug �

Thus RX�
�R� �D�RX�

�R�� forms a split component and its embedding may be chosen
freely	 Hence R� may be embedded on an arbitrary side of RX�

with respect to RX 	

Figure �	���c� illustrates a more delicate situation involving a split pair v and u�	 According
to the de�nition of the dependent set� the vertex u� is contained in D�RX�

� R�� since
there exists a vertex u� with lev�u�� � lev�u�� and two directed paths P and �P � with

�i� P connecting a vertex of RX�
�R� and u��

�ii� �P connecting a vertex of RX�
�R� and u�� and

�ii� P and �P being disjoint	

Although u� � D�RX�
�R��� the vertex u� is not contained in the split component of v and

u�	 The vertex u�� however� does not belong to the dependent set D�RX�
� R�� since any

directed path connecting a vertex of RX�
� R� and a vertex in

Sk

i�levu��
V i must contain

the vertex u�	 Hence� the paths are not disjoint and we have that u� �� D�RX�
�R��	 Figure

�	���c� shows a �not necessarily directed� path 'P connecting v and u� via �v� such that 'P
and RX�

� R� � D�RX�
� R�� are disjoint	 This leads to the interesting fact that u� and

therefore u� are �xed in their embedding to the side where �v is� while we are still able to
�ip the split component of u� and v around� choosing an arbitrary side where to embed R�

next to RX�
with respect to RX 	

However� the existence of a split component does not guarantee a free choice of the embed�
ding	 In case that a �not necessarily directed� path �P exists� connecting the vertices v and
u� via �v such that the path �P and RX�

� R� �D�RX�
� R�� are disjoint� and the path �P

uses only vertices in
Slevu��

i�� V i� we cannot �ip the split component of v and u� anymore	

While Fig	 �	���a���b���c� describe examples of dependent sets such that an embedding of
R� can be freely chosen� Fig	 �	���d� gives an example of a dependent set that has to be
embedded such that R� is forced to be embedded on exactly one side of RX�

with respect to
RX 	 Consider a vertex u� � V 	 �RX�

�R��D�RX�
�R��� and a vertex u� � D�RX�

�R��

such that there exists path 'P disjoint to RX�
�R��D�RX�

�R��� connecting v and u� via u��

and the path 'P uses only vertices in
Slevu��

i�� V i	 If there exists a vertex u� � D�RX�
�R��

with lev�u�� 
 lev�u��� the path 'P forces R� to be embedded on one side of RX�
with

respect to RX 	

Figure �	�� implicitly assumes that the Q�node X remains a node with at least two nonig�
nored children� one being the Q�node Y �the node that has been introduced when merging
T �R�� and T �R���	 The example of Fig	 �	�� shows a subgraph corresponding to the sub�
tree rooted at X� where X has become a Q�node with only one nonignored child that is the
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node Y 	 Thus� there exists a split pair v and �v in G with �v being the connective cut vertex
of RX that allows reversing the split component containing �RX	�RX�

�R��D�RX�
�R���	

This implies that R� may be embedded on either side of RX�
with respect to RX 	 We note

that a path P � �v � u�� u�� � � � � u� � u�� � 
 
� may exist� connecting v and a vertex
u � D�RX�

�R�� such that P is disjoint to D�RX�
�R��� and the path P uses only vertices

in
Slevu�

i�� V i	 Such a path has no e�ect on the embedding of R� next to RX�
with respect

to RX since P must traverse the connective cut vertex �v of RX 	 Figure �	�� shows the path
P as a dotted line	
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P

Figure �	��� Graph corresponding to the situation where X became a Q�
node with one nonignored child	 The embedding ofRX�

�R��D�RX�
�R��

with respect to RX may be chosen freely	

However� if there exists a vertex �u � �RX 	 �RX�
�R� �D�RX�

�R��� such that for every
vertex ui � P the inequality lev�ui� � lev��u� holds� the embedding of R� is �xed next to
RX�

with respect to RX 	 Figure �	�� shows such a situation that does not allow to �ip the
split component of v and �v without creating a crossing	 This case occurs if the node Y
becomes an endmost child of the Q�node X	

Obviously two possible scenarios may occur	

 The subgraph R� is �xed to one side of RX�
with respect to RX in the �nal level

planar embedding	 The set of sink indicators that has to be considered for edge
augmentation is predetermined but is unknown during the merge operation	

 The subgraph is not �xed to any side of RX�
with respect to RX in the �nal level

planar embedding	 Thus we may chose arbitrarily either the left or the right reference
set for edge augmentation	 However� also this fact is unknown during the merge
operation	

We now gather our observations on the coherence between the paths connecting v and any
vertex u � D�RX�

�R�� and the embedding of R�	
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Figure �	��� Graph corresponding to the situation where X is a Q�node
with Y being an endmost child	 If a path P exists� the embedding of
RX�

� R� �D�RX�
� R�� with respect to RX is �xed	

Observation 	���� Let v be the connective cut vertex of RX�
and let �v be the connective

cut vertex of RX if X has a parent� The subgraph R� is not �xed to any side of RX�
with

respect to RX if and only if for every vertex u in the dependent set D�RX�
� R�� and

every undirected path P � �v � u�� u�� � � � � u� � u�� � 
 
� with ui �
Slevu�

i�� V i for all
i � �� 
� � � � � �� one of the following conditions holds�

�i� u��� � RX�
� R� �D�RX�

� R���

�ii� �v � P and for all v� � �RX	 �RX�
�R��D�RX�

�R��� the inequality lev�v�� � lev�u�
holds�

�iii� v and u form a split pair in G and for all v� � D�RX�
� R�� 	 fug the inequality

lev�v�� � lev�u� holds�

Observation 	��	� Let v be the connective cut vertex of RX�
and let �v be the connective

cut vertex of RX if X has a parent� The subgraph R� is �xed to a side of RX�
with respect to

RX if and only if there exists a vertex u in the dependent set D�RX�
�R�� and an undirected

path P � �v � u�� u�� � � � � u� � u�� � 
 
� with ui �
Slevu�

i�� V i for all i � �� 
� � � � � �� and
all of the following three conditions hold�

�i� u��� �� RX�
� R� �D�RX�

� R���

�ii� �a� �v �� P � or

�b� �v � P and there exists a v� � �RX 	 �RX�
� R� � D�RX�

� R��� such that
lev�v�� 
 lev�u��
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�iii� There exists a vertex v� � D�RX�
�R��	fug such that the inequality lev�v�� 
 lev�u�

holds�

The path P connecting the vertex v and a vertex u � D�RX�
� R�� uses only level�i

vertices with i � lev�u�	 This implies that the last edge �u���� u� on the path P must be
an incoming edge of u	 We use this fact to determine to which side of RX�

the form R� is
�xed with respect to RX 	 During the reduction of the leaves corresponding to the vertex
u we analyze the incoming edges of u� determining for each edge if it is the last edge of a
path that is treated in one of the Observations �	�� and �	��	 The following two lemmas
help us to perform the case distinction in a very ecient way	 We note that the parent of
Y �Y is the Q�node that has been inserted by the merge operation� does not need to be
the node X throughout the algorithm� e	g	� it may have been removed from the PQ�tree
when applying a reduction using one of the templates Q
 and Q�	

Lemma 	��
� The subgraph R� has to be �xed in its embedding at one side of RX�
with

respect to RX if and only if the Q�node Y is removed from the tree T during the application
of the template matching algorithm using template Q
 or template Q�� and the parent of
Y did not become a node with Y as the only nonignored child�

Proof� Let R� be �xed to a side of RX�
with respect to RX 	 According to Observation

�	��� there exists a vertex u in the dependent set D�RX�
� R�� and an undirected path

P � �v � u�� u�� � � � � u� � u�� � 
 
� with ui �
Slevu�

i�� V i for all i � �� 
� � � � � �	 The last
edge e � �u���� u� on P is therefore an incoming edge of u� and the following holds�

u��� �� RX�
� R� �D�RX�

� R�� �

Since u is in D�RX�
�R��� it must have a second incoming edge �e� with �e being incident to

a vertex �u �
Slevu���

i�� V i��RX�
�R��D�RX�

�R���	 Thus for the leaf �l in T corresponding
to �e it follows that

�l � frontier�Y � � ��	��

Furthermore� the condition �	���i� guarantees that for the leaf l in T corresponding to e
we have

l �� frontier�Y � � ��	
�

Let Z be the smallest common ancestor of l and �l in the PQ�tree	 According to �	� and
�	
� the Q�node Y is a descendant of Z and we have Y �� Z	

Let �X be the parent of Y 	 If condition �	���ii��a� holds� then l � frontier� �X�� and �v �the
connective cut vertex of RX� and v �the connective cut vertex of RX�

� do not form a split
pair in G	 Thus the parent of Y did not become a node with Y as its only nonignored
child	
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If on the other hand condition �	���ii��b� holds� then l �� frontier� �X�� but there exists
at least one empty child of �X containing a leaf in its frontier corresponding to a vertex
v� � �RX 	 �RX�

�R� �D�RX�
�R���	 Thus again� the parent of Y did not become a node

with Y as the only nonignored child	

The node Y was a child of the Q�nodeX when it was introduced into the PQ�tree	 Since the
parent of Y did not become a node with Y as the only nonignored child� we have according
to Lemma �	� that Y remains a child of a Q�node throughout the applications of the
template matching algorithm	 Due to the overall assumption that no vertex in D�RX�

�R��
is involved in another merge operation� Y remains a child of a Q�node throughout every
merge operation	

Due to condition �	���iii� there exists an empty leaf in the frontier of the node Y 	 Thus Y
is a partial node� and Y and its parent �X are traversed during the reduction with respect to
the vertex u	 Since �X is a Q�node that is contained in the pertinent subtree with respect
to u� either template Q
 or template Q� is applied to Y and �X� removing Y from the
PQ�tree	

Now let Y be removed from the tree during the reduction with respect to some vertex u
by applying template Q
 or Q� and and let the parent of Y never become a node with Y
being its only nonignored child	

Since the parent of Y always has at least two children� condition �	���ii��a� or �ii��b�
must hold	 Furthermore� the application of template Q
 or Q� implies that the template
matching algorithm has traversed Y and its parent� which is a Q�node as well	 Hence the
root of the pertinent subtree must be a proper ancestor of Y 	 Thus there exists a pertinent
leaf l not in the subtree of Y � and a path P � �v � u�� u�� � � � � u� � u�� � 
 
� with

ui �
Slevu�

i�� V i for all i � �� 
� � � � � �� and the following holds�

u��� �� RX�
� R� �D�RX�

� R�� �

Since one of the templates Q
 and Q� has been applied in order to remove Y from the
tree� Y itself must have been partial� and therefore must have had at least one empty leaf
in its frontier	 Thus condition �	���iii� holds	 It follows that R� is �xed on one side of RX�

with respect to RX 	

Lemma 	���� The subgraph R� is not �xed to any side of RX�
with respect to RX if and

only if one of the following cases occurs during the application of the template matching
algorithm�

�i� The Q�node Y gets ignored�

�ii� The Q�node Y is not ignored and can be found in the �nal PQ�tree�

�iii� The Q�node Y has only one nonignored child�

�iv� The parent of Y has only Y as a nonignored child�
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Proof� Let R� be a subgraph not �xed to any side ofRX�
	 According to Observation �	�� the

cases �	���i�� �	���ii�� or �	���iii� apply	 If there exists a path P in G that satis�es condition
�	���ii�� it follows that the Q�nodeX was transformed into a node with only one nonignored
child and possibly some ignored children	 Then the case �iv� follows immediately	 If there
exists a vertex u � D�RX�

�R�� that satis�es �	���iii� then there exists a level l� lev�w� �
l � k� �w being the vertex involved in merging RX�

and R�� such that

D�RX�
�R�� �

k�
i�l

V i � �

and

jD�RX�
�R�� � V l��j � � �

Thus after completing the level planarity test for Gl�� the node Y is a Q�node with just
one nonignored child	

Now assume that �	���i� holds for all paths inG connecting v and a vertex u � D�RX�
�R��

and no path matches condition �	���ii� and �	���iii�	 It follows from �	���i� that �	���i�
cannot hold	 According to Lemma �	��� the Q�node Y is not removed from the tree using
one of the templates Q
 and Q�	 Therefore� one of the following two cases must hold	

�	 There exists a level l� lev�w� � l � k� such that

D�RX�
�R�� �

k�
i�l

V i � �

and

jD�RX�
� R�� � V l��j 
 � �

Thus after completing the level planarity test for Gl�� the node Y is a Q�node with
nonignored children	 Two subcases occur

�a� Every leaf in the frontier of the nonignored children of Y is replaced by a sink
indicator before testing Gl for level planarity	 It follows that case �i� applies	

�b� All leaves in the frontier of Y except for the leaves in the frontier of one child
of Y become ignored	 Thus case �iii� applies


	 The node Y is found in the �nal PQ�tree	

In reversion� if one of the four cases applies to the Q�node Y � we have by Observation �	��
that any embedding may be chosen	
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Lemmas �	�� and �	�� reveal a solution for solving the problem of deciding whether R� is
�xed to one side of RX�

with respect to RX 	 A strategy is developed for detecting on which
side of RX�

the subgraph R� has to be embedded	 One endmost child of Y clearly can
be identi�ed with the side where the root of T� has been placed� while the other endmost
child of Y can be identi�ed with the side were X	 is	 Every reversion of the Q�node Y
corresponds to changing the side were R� has to be embedded and all we need to do is to
detect the side of Y that belongs to R�� when �nally removing Y from the tree applying
one of the templates Q
 or Q�	 The strategy is to mark the end of Y belonging to R� with
a special ignored node	 Such a special ignored node is called a contact of R� and denoted
by c�R��	 It is placed as endmost child of Y during the merge operation B or C next to
the root of T�	 Thus the Q�node Y has now three children instead of two	 See Fig	 �	�� for
an illustration	
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w

X	
I�I�I� I���

Y

�b� Contact c�R�� is added as a child to Y next to the root of T��

Figure �	��� Adding a contact during the merge operation C	

Since the contact c�R�� is related to a w�merge operation� the vertex w is called related
vertex of c�R�� and denoted by ��c�R���	 The corresponding w�merge operation is said to
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be associated with c�R��	 Before gathering some observations about contacts� it is necessary
to show that the involved ignored nodes remain in the relative position of Y within the
Q�node� and are therefore not moved or removed	

Lemma 	���� The ignored nodes of rseq�R��
left and rseq�R��

right stay siblings of Y until
one of the templates Q
 or Q� is applied to Y and its parent�

Proof� The ignored nodes of rseq�R��
left and rseq�R��

right are children of a Q�node� and
therefore remain children of a Q�node keeping their order throughout the application of
the template matching algorithm� unless either rseq�R��

left or rseq�R��
right are found to

be within a pertinent sequence	 However� this can only happen if the node Y becomes
pertinent� provided that the node Y does not become ignored itself	

A contact has some special attributes that are immediately clear and very useful for our
approach	 In the following observations we again assume that Y and its parent have not
been an object of another merge operation B or C	 Concatenation of contacts is discussed
in the next subsection	

Observation 	���� Since the contact is an endmost child of a Q�node Y � it will remain
an endmost child of the same Q�node Y � unless the node Y is eliminated applying one of
the templates Q
 or Q��

Observation 	���� If the node Y is eliminated applying the templates Q
 or Q�� the
contact c�R�� determines the side were R� has to be embedded next to RX�

with respect to
RX � The contact is then a direct sibling to rseq�R��

i� for some i � fleft � rightg and ref�R��
i

has to be considered for edge augmentation�

Observation 	���� If one of the four cases mentioned in ��	 applies to Y or its parent�
R� can be embedded on any side RX�

with respect to RX and therefore either ref�R��
left or

ref�R��
right has to be considered for edge augmentation�

Besides placing c�R�� as endmost child next to the root of T�� c�R�� is equipped with a set
of four pointers� denoting the beginning and the end of both the left and the right reference
sequence of R�	 Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes on the left side
of Y with Y and I� being direct siblings� and let J�� J�� � � � � J
�  
 �� be the sequence of
ignored nodes on the right side of Y with Y and J� being direct siblings	 Let

ref�R�� �

	
��

i��

frontier�Ii�



�

	
��
i��

frontier�Ji�




for � � � � �� �� � � � � 

with 	
��

i��

frontier�Ii�



� � if � � �� �
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and 	
��
i��

frontier�Ji�



� � if � � � �

After performing a reduction applying template Q
 or Q� to the node Y � the contact
is either a direct sibling of I� or a direct sibling of J�	 In the �rst case� we scan the
sequence of ignored siblings starting at I� until the ignored node I� is detected	 In the
latter case� the sequence of ignored siblings is scanned by starting at J� until the node
J� is detected	 Figure �	�� illustrates this strategy for the latter case	 Storing pointers of
the ignored nodes I�� I�� J�� J� at c�R��� we are able to identify the reference set ref�R��	
The nodes I�� I�� J�� J� are called the reference points of the contact c�R��	 Analogously to
the de�nition of a reference set of R�� ref�R�� is said to be the reference set of c�R�� and
denoted by ref�c�R���	

T�

c�R��
I�I�I� I��� J� J
J� J���

Y

�a� Node Y with contact c�R�� before the application of a template Q� or Q��

T�

I�I� I��� I� J� J
J� J���c�R��

�b� Contact c�R�� is adjacent to the ignored node J�� We chose ref�R��
right for

augmentation�

Figure �	��� Identi�cation of the reference set that has to be chosen
for augmentation	 The dotted lines denote the pointers of c�R�� to its
reference points	

The section closes with a summary of the results	
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Lemma 	���� Let c�R�� be a contact related to a vertex w and let ref�R��
left be the left

reference set of c�R�� with reference points I�� I� and ref�R��
right be the right reference set

of c�R�� with reference points J�� J�� Then the following statements are true�

�i� If c�R�� is adjacent to I�� then augmenting Gst by an edge �u� w� for every si�u� �
ref�R��

left does not destroy level planarity�

�ii� If c�R�� is adjacent to J�� then augmenting Gst by an edge �u� w� for every si�u� �
ref�R��

right does not destroy level planarity�

Proof� The lemma immediately follows from Lemmas �	�� and �	��	

Remark 	���� It is important to note that a contact and its reference set do not have
an e�ect on the results in the Lemmas ���� ���� and ���� A contact is nonexisting for
these lemmas and either the left or the right reference set of the contact can be regarded as
nonexisting as well� while the other set stays in the PQ�tree� If a reference set and therefore
also its contact is contained within a pertinent sequence� we are always able to decide by
the application of the template matching algorithm which part of the reference set is in fact
not contained in the PQ�tree�

����� Concatenation of Contacts

For clarity� the previous section omitted the concatenation of merge operations applied to
the vertices of the dependent set corresponding to a merge operation B or C	 This section
deals with the subject of concatenating merge operations	

Let R� be a reduced extended form� that has been w��merged into a reduced extended
form R applying a merge operation B or C	 Let T and T� be the PQ�trees corresponding
to R and R�	 Let X be the Q�node with children X�� X�� � � � � X�� � 
 
� and let X	�
� � f�� 
� � � � � �g� be the child that is replaced by a new Q�node having two children X	

and the root of T�	 Let Ri� i � 
� �� � � � � �� be reduced extended forms where every Ri has
to be wi�merged into R� and Ri is wi�merged into R before Ri�� is wi���merged into R� for
all i � 
� �� � � � � �	 �	

De�nition 	���� Let D�RX�
� R�� �

Sk

��levw��
V � be the dependent set of RX�

� R��

The dependent set of RX�
� R� � R� � � � � � Ri� i � f
� �� � � � � �g� is denoted by D�RX�

�

R� � R� � � � � � Ri� �
Sk

��levw��
V �� and is recursively de�ned to be the set of all vertices

u �
Sk

��levw��
V � such that the following conditions hold�

	� w� � D�RX�
�R� � R� � � � � � Ri����


� There exists a directed path P � �u�� u�� � � � � u� � u�� � � �� with u� � RX�
� R� �

R� � � � � �Ri�
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�� There exists a vertex �u �
Sk

��levw��
V � and a directed path �P � ��u�� �u�� � � � � �u � �u��

� � �� with �u� � RX�
�R� �R� � � � � �Ri� such that lev��u� 
 lev�u� and the paths P

and �P are vertex disjoint except possibly for u and �u�

De�nition 	��	� A sequence of wi�merge operations� i � �� 
� � � � �� of reduced extended
forms Ri into a reduced extended form R is said to be a concatenation of merge operations
if the following three conditions hold�

�i� R� is w��merged using a merge operation B or C�

�ii� For all wi�merge operations we have wi � D�RX�
�R� � R� � � � � � Ri����

�iii� R� has not been �xed to one side of RX�
with respect to RX and it is unknown if its

embedding can be chosen freely�

Interestingly� a concatenation of merge operations does not really a�ect the results of
Observations �	�� and �	�� and the Lemmas �	�� and �	��	 This is immediately clear for
the observations that we now give for the concatenated case	

Observation 	��
� Let v be the connective cut vertex of RX�
and let �v be the connective

cut vertex of RX if X has a parent� Let Ri� i � �� 
� � � � � �� be a sequence of reduced
extended forms that are wi�merged into R and their merge operations are concatenations�
The subgraph R� is not �xed to any side of RX�

with respect to RX if and only if for
every vertex u in the dependent set D�RX�

�R� �R� � � � � �R�� and every undirected path

P � �v � u�� u�� � � � � u� � u�� � 
 
� with ui �
Slevu�

��� V � for all i � �� 
� � � � � �� one of the
following conditions holds�

�i� u��� � RX�
� R� �R� � � � � � R� �D�RX�

� R� �R� � � � � � R���

�ii� �v � P and for all v� � �RX 	 �RX�
�R� �R�� � � ��R� �D�RX�

�R��R� � � � ��R���
the inequality lev�v�� � lev�u� holds�

�iii� v and u form a split pair in G and for all v� � D�RX�
� R� � R� � � � � � R�� 	 fug

the inequality lev�v�� � lev�u� holds�

Observation 	���� Let v be the connective cut vertex of RX�
and let �v be the connective

cut vertex of RX if X has a parent� Let Ri� i � �� 
� � � � � �� be a sequence of reduced
extended forms that are wi�merged into R and their merge operations are concatenations�
The subgraph R� is �xed to a side of RX�

with respect to RX if and only if there exists
a vertex u in the dependent set D�RX�

� R� � R� � � � � � R�� and an undirected path

P � �v � u�� u�� � � � � u� � u�� � 
 
� with ui �
Slevu�

��� V � for all i � �� 
� � � � � �� and all
three of the following conditions hold�

�i� u��� �� RX�
� R� �R� � � � � � R� �D�RX�

� R� �R� � � � � � R���

�ii� �a� �v �� P � or
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�b� �v � P and there exists a v� � �RX 	 �RX�
�R� �R� � � � � �R� �D�RX�

�R� �
R� � � � � � R��� such that lev�v�� 
 lev�u��

�iii� There exists a vertex v� � D�RX�
�R� �R� � � � � �R��	fug such that the inequality

lev�v�� 
 lev�u� holds�

In order to see that the results of Lemmas �	�� and �	�� �up to minor di�erences� still
hold� we show that the �local structure� of the PQ�tree at the Q�node Y and its parent X
either does not change or� if it changes� the embedding of R� is �xed on one side of RX�

with respect to RX 	 With an �unchanged local structure� we express �informally� that
throughout concatenated merge operations the node Y �or any node that replaces Y �� and
X �or any node that replaces X� stay Q�nodes with Y �or its replacing node� remaining
unchanged in the position of its siblings	 The following lemma formally describes how the
Q�node Y is changed during subsequent concatenated merge operations	 The results of the
lemma then immediately lead to results similar to the ones in Lemmas �	�� and �	��	

Lemma 	���� Let Y be a Q�node that has been introduced by w��merging the PQ�tree
T� into T using a merge operation B or C� replacing a child X	 of a Q�node X� Let Ti�
i � 
� �� � � � � �� � 
 
� be a sequence of PQ�trees that are wi�merged into T such that the
wi�merge operations are concatenations� Let Y � be the node that occupies the position of
Y in the PQ�tree after the w��merge operation is complete� Then Y � and its parent are
Q�nodes�

Proof� Let Ri� i � �� 
� � � � � �� be the forms corresponding to the PQ�trees Ti	 We prove
the lemma by induction	

According to the de�nition of a concatenation R� has not been embedded at one side
of RX�

with respect to RX and it is unknown if its embedding can be chosen freely	
Lemma �	�� therefore implies that the parent of Y did not become a node with Y as the
only nonignored child� and according to Corollary �	� the parent of Y must be a Q�node	
Furthermore� Lemma �	�� implies that Y must have at least two leaves in its frontier both
corresponding to di�erent vertices in G	

When applying a w��merge operation to a vertex w� � D�RX�
�R�� three cases are possible	

�i� Only descendants of Y are a�ected by the merge operation	

�ii� The node Y and its parent are a�ected by the merge operation	

�iii� Proper ancestors of Y are a�ected by the merge operation	

Consider the �rst case	 If only proper descendants of Y are involved� neither Y nor its
parent are a�ected	 If Y and a child of Y are a�ected� the merge operations B� C or D are
applied to the child	 Thus Y remains a Q�node with unchanged position in the PQ�tree	

Consider the second case	 Since the parent of Y is a Q�node� the only allowed merge
operations are B� C� and D	 The operations B and C insert a new Q�node Y � at the
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position of Y 	 Reducing the leaves labeled w� after the merge operation does only a�ect
the children of Y �� since Y � is the root of the pertinent subtree	 Therefore� the Q�node
Y � remains unchanged in its position	 However� if the merge operation D is applied� the
template matching algorithm performed directly after the merge operation removes Y from
the tree by applying one of the templates Q
 or Q�	 Hence� according to Lemma �	��� R�

is embedded at one side of RX�
with respect to RX 	 Therefore� the w��merge operation of

T� and the w��merge operation of T� are not a concatenation	

If proper ancestors of Y are involved� the reduction of the PQ�tree with respect to w�

removes Y from the PQ�tree by applying one of the templates Q
 or Q�	 Again� the
w��merge operation of T� and the w��merge operation of T� are not concatenated	

The lemma then follows by a simple inductive argument	

The following lemmas are almost identical to the Lemmas �	�� and �	��� taking into account
that the subgraph induced by the subtree rooted at Y �or any Q�node that replaces Y due
to a merge operation� may have grown by concatenated merge operations	

Lemma 	���� Let Y be the Q�node that was introduced by a w��merge operation B or C
of a PQ�tree T� into a tree T � replacing a node X	 that was a child of a Q�node X in T �
Let Y � be a Q�node occupying the position of Y � and Y � has been introduced during a merge
operation concatenating the w��merge operation� The subgraph R� corresponding to T� has
to be embedded at exactly one side of RX�

with respect to RX if and only if the Q�node
Y � is removed from the tree T during the application of the template matching algorithm
using template Q
 or template Q�� and the parent of Y did not become a node with Y as
the only nonignored child�

Proof� The lemma follows from Lemma �	�� and Lemma �	
�	

Lemma 	���� Let Y be the Q�node that was introduced by a w��merge operation B or C
of a PQ�tree T� into a tree T � replacing a node X	 that was a child of a Q�node X in
T � Let Y � be a Q�node occupying the position of Y � and Y � has been introduced during a
merge operation concatenating the w��merge operation� The subgraph R� corresponding to
T� is not �xed to any side of RX�

if and only if one of the following cases occurs during
the application of the template matching algorithm�

�i� The Q�node Y � gets ignored�

�ii� The Q�node Y � is not ignored and can be found in the �nal PQ�tree�

�iii� The Q�node Y � has only one nonignored child�

�iv� The parent of Y � has only Y � as a nonignored child�

Proof� The lemma follows from Lemma �	�� and Lemma �	
�	
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Let c be a contact that is a child of the Q�node Y 	 As long as concatenated merge operations
only a�ect descendants of the Q�node Y � they have no e�ect on c and its reference sequence	
However� if Y and its parent are subject to a merge operation B or C� there exists a
coherence between the existing contact c and the new contact that is introduced by the
merge operation	

Consider a node X	 and its parent X that are subject to several merge operations	 Due
to Lemma �	
�� the merge operations A� D� and E can be performed one after another
without worrying about the correct treatment of involved sink indicators	 However� the
merge operations B and C may �a�ect� each other	 Consider for instance the example
shown in Fig	 �	��� presenting three forms R��R�� and R� that have been successively
merged into a form R at the vertices w�� w�� w�	 For every form Ri� the example also gives
the set of edges that have to be added as incoming edges to wi� i � f�� 
� �g� in the given
embedding	 On the other hand� Fig	 �	
� gives the same example only with a di�erent
embedding showing di�erent sets of edges that have to be added as incoming edges to
wi	 In particular� the edge set joining w� is now empty	 The vertices w�� w�� w� do not
necessarily have to be on the same level	
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v
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Figure �	��� Concatenation of merge operations	 First possible embedding
of the forms R�� R�� and R� next to RX�

with respect to RX 	

In the rest of this section we discuss how to handle sequences of the merge operations B
and C that may a�ect each other	 We say that two contacts c� and c� mutually in�uence
each other if ref�c�� � ref�c�� �� �	 Two merge operations B or C mutually in�uence each
other if their corresponding contacts mutually in�uence each other	 Consider a Q�node Y
that has been introduced as a child of a Q�node X applying one of the operations B or C	
The following lemma shows when merge operations mutually in�uence each other	
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Figure �	
�� Concatenation of merge operations	 Second possible embed�
ding for the forms R�� R�� and R� next to RX�

with respect to RX 	

Lemma 	���� Let X be a Q�node and let Y be a Q�node that is a child of X such that
Y has been introduced by applying a merge operation B or C� Let c� be the contact that
is associated with the merge operation� Let c� be another contact that is associated with a
later merge operation B or C� Then c� and c� mutually in�uence each other if and only if
the node Y and its parent X have been object of the merge operation associated with c��

Proof� Let Y and its parent X be object of a merge operation associated with c�	 If
ref�c�� �� � �otherwise� c� is not installed� we have that ref�c�� � ref�c�� �� �	 Therefore c�
and c� mutually in�uence each other	 �Notice that ref�c�� � ref�c�� does not necessarily
hold	�

To show the �only if� part it is convenient to prove that a contact associated with a merge
operation that a�ects nodes other than Y and X does not in�uence c�	 Consider a merge
operation B or C that is associated with descendants of Y 	 Then every node in rseq�c�� is
also a descendant of Y 	 Therefore� c� and c� do not in�uence each other	

Next� consider a merge operation that is associated with an ancestor Z of X and the parent
Z � of Z	 Since Z � is a proper ancestor of X� c� and c� do not refer to the same ignored
nodes	

Finally� any other pair of a node Z and its parent Z � that are a�ected by a merge operation
obviously does not have an e�ect on Y and its contact c� unless Z is a direct nonignored
sibling of Y and Z � � X	 Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes between
Z and Y with Z and I� being direct siblings� and Y and I� being direct siblings	 According
to Lemma �	�� there exists a � � f�� 
� � � � � � � �g such that ML�Z�X� � ML�I���� I���
with I� � Z and I��� � Y 	 Thus I��� is not in rseq�c�� and I� is not in rseq�c��	 It follows
that ref�c�� � ref�c�� � �	
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Remark 	���� Let X be a Q�node in a PQ�tree T and let Y be a Q�node that is a child
of X such that Y has been introduced by applying a merge operation B or C� The merge
operations A and E obviously do not a�ect Y and X since the conditions are not satis�ed�
The merge operation D does not a�ect X and Y either� since a PQ�tree T � that is merged
into T involving the nodes X and Y either is placed between Y and its left nonignored
sibling� or between Y and its right nonignored sibling� If frontier�Y � contains one of the
pertinent leaves that is considered for the merge operation� the application of the template
matching algorithm will lead directly to the removal of Y and therefore to the removal of
its endmost contacts� If not� we have according to Lemma ��		 no con�ict concerning the
involved ignored nodes�

Lemma �	�� allows an easy detection of the existence of contacts that are in�uenced by
the introduction of a new contact	 In case of a merge operation B or C� we only need to
check if the node Y that has to be replaced by a new Q�node does have a contact as an
endmost child	 However� the contact is then separated from its reference sequence since Y
is not a child of the Q�node X anymore	 This seems to destroy the strategy of handling
the contact and its reference sequence correctly	 The following lemma shows how to deal
with this problem	

Lemma 	���� Let X be a Q�node and let Y be a Q�node that is a child of X such that
Y has been introduced by applying a merge operation B or C� Let c� be the contact that
is associated with the merge operation� Assume further that X and Y are object of a con�
catenated w�merge operation B or C and that Y is replaced by a new Q�node Y �� where Y �

gets as children �by construction� the root of some PQ�tree T � and the node Y � Then Y is
removed from the PQ�tree during the reduction with respect to w�

Proof� The new Q�node is obviously the root of the pertinent subtree with respect to
w	 Since the two merge operations are concatenated� Lemma �	�� does not apply to Y 	
�Otherwise� simply remove the contact and either the left or right reference set	� It follows
that the node Y must be a partial Q�node	 Therefore� template Q
 or Q� is applied to Y
and its parent Y �� and Y is removed from the tree� and the children of Y become children
of Y �	

Lemma �	�� ensures that after the reduction with respect to w� c� is again a child of a
Q�node Y �� where Y � is a child of X occupying the former position of Y 	 We consider the
position of c� within the sequence of children of Y �	 Let c� be the contact associated with
the merge operation that introduced Y �	 Two cases may occur during the reduction with
respect to w	

�	 The contact c� was at the empty end of Y and since Y was an endmost child of Y ��
c� is now an endmost child of Y �	


	 The contact c� was at the full end of Y � and appears within the sequence of full
children of Y �	
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After having �nished the reduction with respect to w one of the following two rules is
applied to the contact c�	

Rule I If c� is an endmost child of Y �� c� remains in its position as an endmost child of
Y �	

Rule II If c� is found within the sequence of pertinent nodes� c� is placed as a new endmost
child of Y � next to c�	

Lemma 	���� Let R� R�� and R� be reduced extended forms of a level planar graph G�
Let T � T�� and T� be the PQ�trees corresponding to R� R�� R�� Let w�� w� � V with
lev�w�� � lev�w��� Let R� be �rst w��merged into R� Let R� be w��merged into R after R�

has been w��merged into R such that the two merge operations are concatenated� Let X�
X	� Y and Y � be Q�nodes such that

�a� X	 was a child of X in a PQ�tree T before w��merging T� into T �

�b� X	 was replaced by Y when w��merging T� into T using the merge operation B or C�

�c� Y was replaced by Y � when w��merging T� into T using the merge operation B or C�

Let c�R�� be the contact that is associated with the introduction of Y and let c�R�� be the
contact that is associated with the introduction of Y �� Let RX�

be the subgraph corresponding
to X	� and assume that c�R�� has been replaced by applying one of the Rules I or II� Then
exactly one of the following statements holds�

�i� The contacts c�R�� and c�R�� are both endmost children at the same end of the Q�
node Y � if and only if their corresponding forms have to be embedded on the same
side of RX�

with respect to RX �

�ii� The contacts c�R�� and c�R�� are both endmost children on opposite sides of the
Q�node Y � if and only if their corresponding forms have to be embedded on opposite
sides of RX�

with respect to RX �

Proof� Since the two merge operations are concatenated� Lemma �	�� does not apply to
Y 	 �Otherwise� simply remove the contact and either the left or right reference set	� It
follows that Y is a partial Q�node	 Thus there exist at least two leaves� one corresponding
to an incoming edge of w� and one corresponding to either an incoming edge of a vertex
u � V levw��� u �� w� or an edge traversing level lev�w��	 Since Y is a partial Q�node there
exists an embedding of RY and two paths

P � �u�� u�� � � � � u�� � 
 

u� � R�

ui �� RX�
	 fw�g i � �� 
� � � � � �

lev�ui� � lev�w�� i � �� 
� � � � � �	 �
lev�u�� 
 lev�w��
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and

P � � �u��� u
�
�� � � � � u

�
�� � 
 


u�� � RX�

ui �� R� i � �� 
� � � � � �
lev�u�i� � lev�w�� i � �� 
� � � � � � 	 �
lev�u��� 
 lev�w��

such that

�a� P and P � are disjoint�

�b� both P and P � are on the boundary outer face of the embedding of RY � and

�c� either u� � w� or u�� � w�� but not both	

See Fig	 �	
� for an illustration	
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P �

v
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R�

u�

P

u�
RX�

Figure �	
�� Illustration of the proof of Lemma �	��	

First� case �i� is proven	 Let R� and R� be embedded on the same side of RX�
	 It follows

that w� � P � otherwise R� and P would cross each other	 Let Z be the child of Y that
is an ancestor of the leaf labeled w�	 Since the path P is on the outer face of RY on the
side where R� is embedded� Z must be an endmost nonignored child of Y on the side
where c�R�� is an endmost child	 Since Y is partial� c�R�� will appear within the pertinent
sequence of leaves labeled w� after the reduction with respect to w� is complete	 Therefore
Rule II is applied and c�R�� and c�R�� are both endmost children at the same end of Y �	

Now let c�R�� and c�R�� be endmost children on the same side� and assume that R� and R�

have to be embedded on opposite sides of RX�
with respect to RX 	 It follows that w� � P ��

otherwise R� and P � would cross each other	 By construction� c�R�� was found within in
the pertinent sequence with respect to the vertex w� after R� was w��merged into R	 So
there exists a path P �� on the boundary of RY � and P �� connects a vertex u � R� and w��
not using any vertices u� �

Sk

i�levw��
V i	 However� P �� must cross P � a contradiction	

The case �ii� is proven analogously to the case �i�	
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Remark 	��	� Lemma ���� also holds if w� � w�� It is interesting to note that in the case
of w� � w� the form R� must be a w��singular form� If R� is not singular and w� � w�� it
follows that the PQ�tree T� is merged into the subtree rooted at Y � and merging R� into R
does not in�uence the w��merge operation�

If two contacts c� and c� in�uence each other� and therefore ref�c��� ref�c�� �� � holds� we
need to rede�ne their reference sets such that no con�icts appear when sink indicators for
edge augmentation are considered	 A situation� where we can chose for a sink indicator to
which reference set it belongs has to be avoided	

Again let R� R�� R�� X� X	� Y � Y �� c�R��� and c�R�� be de�ned as in Lemma �	��	 The idea
is to leave the reference set of c�R�� �the contact associated to the ��rst� merge operation�
unchanged� and adapt the reference set of c�R�� �the contact associated to the �second�
merge operation�	 Let I�� I�� � � � � I�� � 
 �� be the sequence of ignored nodes on the left side
of X	 with X	 and I� being direct siblings� and let J�� J�� � � � � J
�  
 �� be the sequence of
ignored nodes on the right side of X	 with X	 and J�� being direct siblings	 For simplicity
assume that

ref�c�R��� �

	
��
i��

frontier�Ii�



�

	

�

i��

frontier�Ji�



�

The case where the direct nonignored siblings of X	 become ignored before w��merging T�
into T � is handled by a straightforward adaption of the strategy	 Let

ref�c�R��� �

	
��

i���

frontier�Ii�



�

	
���
i��

frontier�Ji�




for � � �� � �� �� � � �� � 

be the reference set of c�R��� where we assume without loss of generality that none of the
two subsets is empty	 The reference points of c�R�� are I�� � I�� J�� J�� 	 Assume further that

ref�c�R��� �

	
��

i���

frontier�Ii�



�

	
���
i��

frontier�Ji�




for � � �� � �� �� � � �� �  �

After performing the second merge operation including the reduction of the leaves labeled
w�� the contacts c�R�� and c�R�� occupy two relative positions at the their parent Y �	

�i� c�R�� and c�R�� are endmost children on di�erent ends of Y �	 Due to Lemma �	���
R� and R� are embedded on opposite sides of RX�

with respect to RX 	 Thus c�R��
and c�R�� do not interfere when �nally determining the sets of sink indicators that
are considered for edge augmentation	 We scan the sequences for the reference points
I��� I�� J�� J�� and store them at c�R��	
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�ii� c�R�� and c�R�� are at the same end of Y � with c�R�� being �by construction� an
endmost child	 Due to Lemma �	��� R� and R� are embedded at the same side of RX�

	
Thus c�R�� and c�R�� interfere when we �nally determine the sets of sink indicators
that are considered for edge augmentation	

The new reference set of c�R�� is determined as follows	

ref�c�R���
left �

� S����
i���

frontier�Ii� if �� � ��
� otherwise

��	��

ref�c�R���
right �

� S��
i�����

frontier�Ji� if �� � ��
� otherwise

��	��

Then the reference set of c�R�� is

ref�c�R��� � ref�c�R���
right � ref�c�R���

left �

Hence� the ignored nodes I��� I����� J����� J�� are stored as reference points at c�R��	

Consider the second case when removing the Q�node Y � during the application of the
template Q
 or Q�	 The contact c�R�� is an endmost child of Y �	 Thus� after the application
of the template Q
 or Q� the contact c�R�� is a direct sibling of either I� or J�	 Therefore�
the identi�cation of sink indicators that have to be considered for edge augmentation
joining the vertex w� is a straightforward matter	 After this identi�cation is �nished� the
contact c�R�� and the set of ignored siblings that were considered for augmentation are
removed from the PQ�tree� leaving the contact c�R�� as a direct sibling of either I���� or
J����	 Again� the identi�cation of the sink indicators that have to be considered for edge
augmentation joining the vertex w� is straightforward	

Lemma 	��
� Let ci� i � �� 
� � � � � �� � 
 �� be contacts that are endmost children of a
Q�node Y in a PQ�tree T � Let contact ci be related to vertex wi � V � such that lev�wi� �
lev�wi���� i � �� 
� � � � � � 	 �� In case that lev�wi� � lev�wi��� holds� let the PQ�tree Ti
corresponding to ci be wi�merged into T before the tree Ti�� corresponding to wi�� is wi���
merged into T � Let ref�ci�

left be the left reference set of ci with reference points Ibi � I
e
i and

ref�ci�
right be the right reference set of ci with reference points J

b
i � J

e
i � For every ci� the nodes

Ibi and J
b
i denote the �rst ignored node in the reference sequence rseq�ci�

left and rseq�ci�
right �

respectively� and Iei and J
e
i denote the last ignored node in the reference sequence rseq�ci�

left

and rseq�ci�
right � respectively� Then the following statements hold true�

�i� If ci is adjacent to Ibi � then augmenting Gst by an edge �u� w� for every si�u� �
ref�ci�

left does not destroy level planarity�

�ii� If ci is adjacent to Jb
i � then augmenting Gst by an edge �u� w� for every si�u� �

ref�ci�
right does not destroy level planarity�
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Proof� By construction� the sequence of children of Y is partitioned into the three sets� C��
N and C� where

 C� � c��� c
�
�� � � � � c

�
�� � � � � �� is the sequence of contacts on one end of Y with c��

being an endmost child of Y 	

 N is a sequence of ignored and nonignored nodes	

 C� � c��� c
�
�� � � � � c

�
�� � � �	 �� is the sequence of contacts on the opposite side of C�

with c�� as an endmost child of Y 	

By construction� we have for C�� � � �� 
�

lev���c�i �� � lev���c�i���� i � �� 
� � � � � jC�j 	 �

where ��c�i � denotes the vertex related to c�i 	 For any i � f�� 
� � � � � jC�j 	 �g with

lev���c�i �� � lev���c�i���� the PQ�tree corresponding to c�i has been ��c�i ��merged into

T before the tree corresponding to c�i�� has been ��c�i����merged	

It follows that either c�� � c� or c
�
� � c� and c�� and c�� do no interfere� since their correspond�

ing forms are placed on opposite sides with respect to RX�
and RX 	 We may assume that

c�� � c�	 Due to Observation �	
�� c�� is either adjacent to I
b
� or to J

b
� 	 Assume without loss of

generality that c�� is adjacent to Ib�	 It follows from Lemma �	

 that considering ref�c��
left

for edge augmentation does not destroy level planarity	 Removing c�� and ref�c��
left from

the tree� the correctness of the lemma follows by a simple inductive argument	

��� Complete Algorithm

The last section referred to the details that have to be taken into consideration when
constructing a level planar embedding of a level graph G � �V�E�	 The idea was to
augment the level graph to a level st�graph Gst � �Vst� Est�� Vst � V � fs� tg� E � Est�
compute a planar embedding for Gst and construct a level planar embedding of G from
the embedding of Gst	 This section combines the results and shows the correctness of the
level planar embedder	 Using a function AUGMENT that augments a given level graph by
adding an outgoing edge to every sink in the graph without destroying level planarity� the
level planar embedding algorithm is formulated as follows	

El LEVEL�PLANAR�EMBEDG � �V �� V �� � � � � V k�E��

begin
ignore all isolated vertices�
expand G to Gst by adding s to V � and t to V k���
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AUGMENT�Gst��
if AUGMENT failed then

return El � ��
((Gst is now a hierarchy�
orient the graph Gst from the bottom to the top�
AUGMENT�Gst��
add edge �s� t��
((Gst is now an st�graph�
orient the graph Gst from the top to the bottom�
compute a topological sorting of Vst�
compute a planar embedding Est using the topological sorting

as an st�numbering�
El � CONSTRUCT�LEVEL�EMBED�Est� Gst��
return El�

end	

As sketched in Section �	�� the level planar embedder �rst expands the graph G to Gst

by an extra level V � adjacent to V �� and an extra level V k�� adjacent to V k with a
source s� fsg � V � and a sink t� ftg � V k��	 It then augments Gst to a hierarchy by
applying AUGMENT� adding an outgoing edge to every sink of G	 Applying the function
AUGMENT to Gst from the bottom to the top� Gst is augmented by adding an incoming
edge to every source of G	 When �nally adding the edge �s� t�� the graph Gst is an st�graph	
By construction� the leveling of G is a topological numbering of Gst	 The computation of
any topological sorting on the st�graph yields an st�numbering	 Using this st�numbering�
a planar embedding Est is computed using the algorithm of Chiba� Nishizeki� Abe� and
Ozawa ������	 Finally� the function CONSTRUCT�LEVEL�EMBED presented in Section
�	� computes a level planar embedding El	

The function AUGMENT is almost identical to the function LEVEL�PLANAR� except that
it does not call the function CHECK�LEVEL but a function EMBED�LEVEL	 However�
the function EMBED�LEVEL is almost identical to the function CHECK�LEVEL that has
been described in Section �	�	 We only need the following modi�cations	

�i� If v is a sink in V j� � � j � k� replace the corresponding leaf by a sink indicator si�v�
before processing Gj��	 If this replacement constructs a node X having only sink
indicators in its frontier� mark X as ignored and update the ML�values as described
in Section �	
	�	

�ii� When reducing a set of leaves with respect to a vertex w in a PQ�tree� ignore all
sink indicators and ignored nodes during the application of the template matching
algorithm	 After the reduction is complete� including updates for the PML� and
QML�values� the pertinent subtree is removed from the tree and replaced by a single
representative	 During the removal of the pertinent subtree with respect to w� we
check for sink indicators in the pertinent subtree	 For every si�v� that is found in
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the pertinent subtree� we add an edge �v� w� to Gst� unless si�v� is a�ected by the
existence of a contact c in the pertinent subtree	 If the latter applies� add an edge
�v� w��� with w� being the vertex related to c	

�iii� When w�merging a PQ�tree T � into a PQ�tree T � necessary adjustments as described
in the Sections �	
	� and �	
	� have to be applied to the merge operations B or C	 If
necessary� a contact is introduced as a third child of the new Q�node	 Furthermore� if
the new contact mutually in�uences existing ones� the Rules I or II �see �	
	�� have
to be applied after reducing T with respect to w	

�iv� After processing the level k� an edge �v� t� is added for every vertex v � V k	 Fur�
thermore we scan the �nal PQ�tree T for remaining sink indicators� and add for
every indicator si�v� an edge �v� t� to Gst� unless si�v� is a�ected by the existence of
a contact c in the pertinent subtree	 If the latter applies we add an edge �v� w��� with
w� being the vertex related to c	

Theorem 	���� The algorithm LEVEL�PLANAR�EMBED computes a level planar em�
bedding of a level planar graph G � �V�E��

Proof� From Lemmas �	�� �	�� �	� and �	�� it follows that augmenting Gst to a hierar�
chy using the function AUGMENT does not destroy level planarity	 Consequently� the
augmentation of Gst to a single source� single sink graph does not destroy level planarity
either	 The vertices s and t are on the outer face of a level planar embedding of Gst	
Hence� adding the edge �s� t� to Gst does not destroy level planarity	 Thus a planar st�
graph has been constructed	 Computing a topological sorting of Gst yields a numbering
N � Vst � f�� 
� � � � � n� 
g of the vertices with

�i� N �s� � � and N �t� � n� 
� and

�ii� for every v � V there exist vertices u� w � Vst such that N �u� � N �v� � N �w�	

Thus N is an st�numbering of Vst and applying the embedding algorithm of Chiba et al�
������ to Gst we can construct according to Theorem �	� a level planar embedding of
G	

��� Proving O�n� Running Time

Equipping the PQ�trees with sink indicators and contacts� and marking internal nodes
as ignored nodes seems to be a massive blow up of the data structure� easily consuming
quadratic running time	 However� as we will prove with the next theorem� we get a linear
running time algorithm	 The linearity of the algorithm follows mainly from two facts	
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�	 The number of sources and sinks is bounded by n	 Thus the number of sink indicators�
contacts and internal ignored nodes is bounded by a constant multiple of n	


	 We scan for ignored nodes only if necessary	 The number of accesses of ignored nodes
is bounded by a constant factor of n as well	

Before proving the main theorem of this section� we show that the augmentation of the
graph G into a hierarchy only needs O�n� time	

Lemma 	���� Given a level planar graph G � �V�E� with k levels and an extra sink t
on an extra level k � �� the function AUGMENT constructs in O�n� time a level planar
hierarchy by augmenting G for every sink v � V by an edge e � �v� w�� w � V � ftg�
lev�v� � lev�w��

Proof� The function AUGMENT performs as the function LEVEL�PLANAR� with certain
modi�cations	 It is sucient to show that the amount of extra work performed by these
modi�cations consumes O�n� time	

The number of sinks is bounded by O�n�	 Thus the number of sink indicators and contacts
is bounded by O�n�	 Since every P �node corresponds to a cut vertex and every Q�node to
a reversible subgraph� the number of ignored P � and Q�nodes is also bounded by O�n�	
Marking a node as ignored is done only once per node� and is performed if the last remain�
ing nonignored child becomes ignored	 Therefore� the amount of time needed to discover
nodes that have become ignored is bounded by O�n� for all ignored nodes throughout the
application of the algorithm	

According to Theorem �	��� AUGMENT constructs a level planar graph by adding at
most n edges	 Thus a sink indicator si�v� of a sink v � V can be interpreted as a leaf
corresponding to an outgoing edge of v	 The tree is not scanned explicitly for sink indicators	
�Recall that we do not scan for ignored nodes during the application of templates P
� P��
� � � � P�	� Thus an ignored node is scanned only a constant number of times during the
application of the template matching algorithm	 Therefore we have that the number of
extra operations in all calls of REDUCE is in O�n�	

The amount of work that has to be done during the merge operations B and C in order to
install a contact and to identify the reference sets of the contact is bounded by a constant
plus the number of ignored nodes that are contained in the reference sequence	 We combine
three facts�

�i� Every ignored node may appear at most twice in a reference sequence �twice in case
that two contacts are endmost children on opposite sides of the same Q�node�	

�ii� Let c�� c�� � � � � c� be the sequence of contacts on the left end of a Q�node Y � and let
c���� c���� � � � � c� be the sequence of contacts on the right end of Y 	 Let

rseqleft
� �

��
i��

rseq�ci�
left �
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rseqleft
� �

��
i����

rseq�ci�
left �

rseqright
� �

��
i��

rseq�ci�
right �

rseqright
� �

��
i����

rseq�ci�
right �

We keep for each of the four sequences a pointer to the �rst and a pointer the last
ignored node� including information on the minimal ML�value between ignored sib�
lings of a sequence	 Using these pointers� a new contact c��� can be concatenated at
c�� c�� � � � � c� using only constant time to check if its left or right reference sequence
is empty	 If the left or the right reference sequence is not empty� the reference se�
quence consists due to equations �	� and �	� only of ignored nodes that are either
not contained in rseqleft

� � and rseqright
� �in case that c��� is added to the same side

as c�� c�� � � � � c��� or not contained in rseqleft
� � and rseqright

� �in case that c��� is added
to the same side as c���� c���� � � � � c��	 Thus the total amount of work needed for
determining the reference sequence of every contact is bounded by the number of
ignored nodes and therefore in O�n�	

�iii� Consider a sequence of contacts c�� c�� � � � � c�� � 
 �� at one end of a Q�node Y �
with c� being an endmost child of Y 	 Thus ci has been introduced into the PQ�tree
before ci��� i � �� 
� � � � � �	 �	 Let c��� be a new contact that has to be introduced
to the tree such that c�� c�� � � � � c� and c��� mutually in�uence each other	 Assume
that c�� c�� � � � � c� appear within the pertinent sequence with respect to ��c����	 Ac�
cording to Rule II the complete sequence c�� c�� � � � � c� has to be moved to the end of
the new Q�node� where c��� is added as an endmost child	 This constructs a new se�
quence c�� c�� � � � � c�� c���	 The children of a Q�node are organized in a doubly linked
list	 Hence� we only need to access the contacts c� and c� for moving the sequence
c�� c�� � � � � c�	 Since the contact c� is an endmost child of Y � it can be accessed in
constant time	 Keeping a pointer at c� towards c�� the contact c� can be accessed in
constant time as well	 When the sequence c�� c�� � � � � c� and c��� have been combined
to a new sequence� the pointer to the end of this sequence stored at c� is updated	
The number of operations to apply Rule II is therefore bounded by a constant per
merge operation	

We deduce that the amount of extra work performed during all merge operations B and C
is bounded by a constant number of operations per merge operation plus the total number
of ignored nodes and therefore is in O�n�	

The amount of extra work that has to be performed for removing contacts and their
corresponding reference sets from the tree is proportional to the number of ignored nodes	
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Contacts� for which the embedding of the associated subgraph is �xed �that is� Lemma
�	
� applies to these contacts� are detected implicitly during a reduction with respect to
some vertex v	 The total amount of work for detecting and removing these contacts and
their reference sets is therefore in O�n�	

We now estimate the amount of work needed for contacts for which the embedding of the
associated subgraph may be chosen freely �that is� Lemma �	�� applies to these contacts�	
The Lemma �	�� does not provide a useful strategy for detecting a contact c�R� with a free
choice for the embedding for R	 Scanning the PQ�trees in order to �nd such contacts results
in a O�n�� time algorithm	 We show how to �nd these contacts during the application of
the template matching algorithm	

Consider several contacts as children of a Q�node Y � and Y is a child of a Q�node X	
According to Lemma �	�� the following four cases may apply to Y 	

�i� The Q�node Y is ignored	

�ii� The Q�node Y is not ignored and can be found in the �nal PQ�tree	

�iii� The Q�node Y has only one nonignored child	

�iv� The Q�node X has only Y as nonignored child	

Case i� The Q�node Y will eventually be found within the pertinent subtree of some
vertex w	 Since Y is child of a Q�node X� X must be itself full� partial or ignored	
Since the ignored node Y is in the pertinent sequence� and the reference sequences
of the contacts of Y are ignored nodes adjacent to Y � the reference sets are also
contained in the pertinent subtree	 When scanning the subtree for sink indicators
si�v�� v � V � in order to augment the graph by edges e � �v� w�� these contacts are
detected	 We chose an arbitrary reference point for a contact c that is an endmost
child of Y � and remove it and its corresponding reference set from the tree� adding
for every si��v� � ref�c� an edge ��v� ��c�� to G	 All other contacts that are children of
Y are removed together with their reference set in correspondence to the choice we
took for the �rst contact	

Case ii� We proceed as in case �i�� when the �nal PQ�tree is scanned for sink indicators
si�v�� v � V � in order to augment the graph by edges e � �v� t�	

Case iii� Two subcases occur	

�a� There exists a vertex w such that Y and its parent X are both in the pertinent
subtree of w	 The node Y may be either full or partial	 In the latter case�
frontier�Y � contains full and empty leaves	

If Y is full� choose for one of its endmost contacts an arbitrary reference point�
and remove the corresponding reference set from the tree	 Continue removing
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the remaining contacts� taking the choice of the �rst removed contact into con�
sideration	 This is done while scanning the pertinent subtree for sink indicators
si�v�� v � V � in order to augment the graph by edges e � �v� w�	

If Y is partial� Y will become a Q�node with at least two children� one of them
being empty and one of them being full	 Thus templates Q
 and Q� have to be
applied to Y and its parent X	 Since the reference points may be chosen freely
for the endmost contacts� we apply one of the templates Q
 or Q� �rst	 This
places the endmost contacts next to one of their reference points	 We remove the
contacts and their reference sets� taking into consideration the situation caused
by the application of the template Q
 or Q�	

�b� There does not exist a vertex such that both Y and X become pertinent	 Then
nodes Y and X are both contained in the �nal PQ�tree and we may freely
choose the reference sets for the contacts	

It is interesting to note that due to the minimality of the pertinent subtree the node
Y never becomes the root of a pertinent subtree in case �iii�	

Caseiv� This case is treated analogously to the case �iii�	

The work that has to be done in the �nal PQ�tree for �nding contacts providing a free choice
for embedding their reference set� is bounded by the number of nodes in T and therefore
in O�n�	 Moreover all other contacts providing a free choice are detected implicitly during
a reduction with respect to some vertex w	 Thus the total amount of work for detecting
and removing contacts with a free choice and their reference sets is in O�n�	

The results of the proof summarize to O�n� running time for the function AUGMENT	

Theorem 	���� The algorithm LEVEL�PLANAR�EMBED computes a level planar em�
bedding of a level planar graph G � �V�E� in O�n� time�

Proof� Clearly� expanding G to Gst by adding s to V � and t to V k�� needs only constant
time	 Augmenting Gst to a hierarchy is in O�n� according to Lemma �	��	 Since the number
of edges added to Gst is bound by O�n�� the graph Gst is augmented to an st�graph in O�n�
time	 Computing a topological sorting can be done in linear time as well and computing
a planar embedding is performed in O�n� time according to Chiba et al� ������	 Finally�
computing a level planar embedding of G using the planar embedding of Gst can be done
in O�n� time according to Corollary �	
	

��� Remarks

It is of course possible to apply the following strategy for embedding a level planar graph	
First� augment the graph to a level planar hierarchy	 Second� compute an embedding of
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the hierarchy using the algorithm LPTH by Di Battista and Nardelli ������	 Since the
augmentation adds at most n edges� the algorithm of Di Battista and Nardelli ������ will
need O�n� time as well� yielding a linear time algorithm for embedding a level planar graph	
However� this is of no practical value� since both implementations� an implementation of
AUGMENT and an implementation of the algorithm of Di Battista and Nardelli� have to
be provided	 None of the two algorithms is easy to implement	 Thus it is preferable for any
programmer just to implement AUGMENT and to use an existing implementation of the
planar embedding algorithm of Chiba et al� ������	 This avoids putting extra e�ort in the
development of LPTH� and good implementations of the embedding algorithm are available
for commercial as well as noncommercial use �see� e	g	� Mehlhorn and N�aher �������	

Our approach for embedding a level planar graph does not make use of the strategy pre�
sented by Chiba et al� ������� except of course for embedding a planar graph	 The idea of
direction indicators has not been considered in the function AUGMENT for two reasons	

�a� An approach using only direction indicators� not augmenting the graph by edges�
computes for every vertex the sequence of incoming edges as they appear in a planar
embedding	 However� according Carpano ������ the planar embedding is not a level
planar embedding	 The approach does not yield any information where to place
sinks and sources of the levels V �� V �� � � � � V k��	 Thus a stronger algorithmic concept
providing more information is needed	

�b� If R� and R� are components of Gj that have to be w�merged at a vertex w � V j���
the merge operations� especially the B and C operations� �ip subsequences of the
incoming edges of w	 To keep track of the reversions of the subsequences of the
incoming edges of a vertex w� several direction indicators have to be provided for
every vertex w	 However� such an approach demands a more involved adaption of the
algorithm of Chiba et al� ������	

We conclude that an adaption of direction indicators not using our approach appears to be
dicult since it requires some sort of post processing for constructing a level planar embed�
ding from the planar embedding� while the approach presented in this chapter transforms
a level planar embedding problem into a planar embedding problem� yielding a straight�
forward adaption of the algorithm of Chiba et al� ������	

A possible modi�cation of our approach would be a combination of AUGMENT and di�
rection indicators	 While our approach needs three phases �twice the application of AUG�
MENT and once the application of the planar embedder�� a combination can be used to
construct a one phase algorithm� using linear time	 But such an approach would be even
more dicult to implement than the three phase algorithm	 Besides� it is not clear if an
implementation of a one phase approach would perform better than the three phase ap�
proach since the amount of extra work for the investigation of the direction indicators is
estimated to be more complicated than in the �normal� planar embedding algorithm	

Finally we mention how the level planar embedder should be modi�ed in order to work on
an unconnected level graph	 Instead of computing for every connected component its own
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st�graph� augment every component with respect to the same super source s and super
sink t and add the edge �s� t� only once	 For the resulting graph� we need to make only
one call of the planar embedding algorithm of Chiba et al� ������	 This in turn allows to
embed all components level planar at once� with the components all lined up in a row	
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Chapter �

Implementation of a Level Planar

Embedder

An object oriented prototype of a level planarity testing and embedding algorithm has
been implemented in C��	 This chapter reviews the concept of the software and pays at�
tention to some of its details	 The implementation of LEVEL�PLANAR�EMBED is based
on an implementation of PQ�trees as template class by Leipert ������	 The planar em�
bedding algorithm of Chiba et al� ������ that is needed in the third phase of LEVEL�
PLANAR�EMBED was provided by Buchheim ������ and is also based on the PQ�tree
implementation of Leipert ������	

In order to display inheritance� acquaintance and aggregation of objects in subsequent
�gures of this chapter� we use a representation as it has been introduced by Gamma�
Helm� Johnson� and Vlissides ������	 If a class B inherits a class A� we say B is a derived
class of A	 A subclasses as B can re�ne and rede�ne the behavior of its parent A� more
speci�cally class B may override an operation de�ned by its parent class A	

Acquaintance means that a class B knows of another class A and we say that B uses class
A	 Acquainted objects �an object is an instance of a class� may request operations on each
other� but they are not responsible for each other	

Aggregation means that a class B owns another class A and we say that B has class A	
Aggregation implies that one object is responsible of another object	 An aggregated object
and its owner have identical lifetimes	 Figure �	� gives an overview on the used symbols	

The �rst section reviews the concept of an implementation of the PQ�tree data structure
as class template in C��	 The second section describes the concept of the implementation
of a level planar embedder based on the implementations of the PQ�tree data structure	
We have implemented the level planarity test as described in section �	� including the
necessary modi�cations as described in �	
 and �	�	 The implementation embeds a level
planar graph in O�n logn� time	 A version using O�n� time has not been implemented yet
since the implementation of the level planarity test according to �	� was already �nished
and an implementation of the level planar embedding algorithm was halfway �nished at

���
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A

B

�a� Class B inherits class A�

A

B

�b� Class B knows class A�

A

B

�c� Class B aggregates
class A�

Figure �	�� Di�erent relationships between classes according to Gamma
et al� ������	

the time we �gured out how to obtain a linear running time	

Since the implementation contains ���� statements� ��� if queries and ��� else and else

if queries� we abstained from presenting the complete implementation and concentrated
on a few details of the implementation	 The last three sections contain such details� namely
the implementation of the merge operation� and the implementation of two templates	 We
decided to present the implementation of template P� since it is the most problematic one
of the templates P� " P�	 Furthermore� we give template Q
 since it includes the handling
of contacts	

��� PQ�trees

Since the PQ�trees obtain more and more attention throughout the literature� the PQ�
trees and the reduction algorithm have been implemented as a template class in C��	
This allows easier adaption of the data structure to di�erent algorithms	 We pursued two
main goals when implementing PQ�trees and the template matching algorithm�

 Easy application of the PQ�tree data structure to the consecutive ones property
problem and other related problems	 Speci�c for such a feature is to let a user not
worry about any internal details of the PQ�tree	 The user just speci�es a set U and
its subsets that have to be reduced	

 The design of the code should be reusable	 Applications of more sophisticated algo�
rithms to the data structure should be possible and easy	

Except for its implementation� the �rst task is conceptually not dicult	 Solving the second
task is more dicult since possible applications of sophisticated algorithms are almost
unpredictable	 A careful study of existing algorithms based on PQ�trees led to the following
requirements on a reusable implementation of the PQ�trees	
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�i� The data structure should be implemented as class template	 This allows very easy
adaption to the consecutive one property problem	

�ii� It should be possible to add new types of nodes	 Applications known in the literature
are the algorithms described in Chiba et al� ������� and Feng et al� ������	

�iii� Di�erent treatment of nodes apart from the original template matching algorithm
should be possible	 Applications known in the literature are the algorithms described
in Chiba et al� ������� and Feng et al� ������	

�iv� It should be possible to associate di�erent kinds of information to the nodes of the
PQ�tree	 Applications known in the literature are the algorithms described in Jayaku�
mar et al� ������� Karabeg ������� Applegate et al� ������� and Hundack et al� ������	

�v� It must be allowed to manipulate a PQ�tree at will	 An application known in the
literature is the algorithm described in Applegate et al� ������	

Constructing PQ�trees as a class template is not problematic	 The addition of new types of
nodes to the PQ�trees can be achieved by the concept of inheritance using an abstract base
class for nodes	 Polymorphism allows di�erent treatment of nodes apart from the original
template matching algorithm by keeping most of the functions as protected virtual member
functions	 If any functionality has to be provided in the template matching algorithm that
di�ers from the original concern� it can be obtained in derived classes by overloading the
corresponding virtual function	 Since ignored nodes are used in several PQ�tree algorithms�
the implementation already provides a set of tools for a straightforward adaption of ignored
nodes	

For allowing all sorts of manipulations to the PQ�tree �e	g	� as it is needed in the algorithm
of Applegate et al� �������� the implementation of the PQ�tree data structure contains
several functions that are called constructive functions	 These functions enable the user to
construct or manipulate PQ�trees and they handle the complete pointer and �ag setup in
the PQ�tree� always providing a proper PQ�tree	 However� the constructive functions do
not update a parent of a modi�ed node� if the node is an interior child of a Q�node	 Such a
node does not have a valid pointer to its parent in general� and updating its parent needs
linear time in the number of nodes in the PQ�tree	 There are� however� exceptions from
this rule	 A few extra functions are included to meet the needs of algorithms that always
have to update the parent pointer	 They can be applied in algorithms that do not use the
PQ�trees in the classical sense �see� e	g	� Applegate et al� �������	

Figure �	
 gives an overview on the design of the class structure that has been used	 We
distinguish in the implementation the following types of objects�

�i� Classes designed to handle information that is associated with leaves or internal nodes
of the PQ�tree	 These classes are dark grey shaded in Fig	 �	
	

�ii� Classes designed to represent the nodes of a PQ�tree	 These classes are light grey
shaded in Fig	 �	
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�iii� Classes managing the data structure PQ�tree and providing the reduction algorithm
REDUCE	 These classes are left unshaded in Fig	 �	
	

PQTreeRoot

PQTree�T�X�Y�

key�T�X�Y� internal�T�X�Y�

basicKey�T�X�Y�

basicKeyRoot

nodeInfo�T�X�Y� nodeRoot

pqNode�T�X�Y� leaf�T�X�Y�

node�T�X�Y�

Figure �	
� Overview on the design of the class structure for the imple�
mentation of the data structure PQ�tree

The implementation of a PQ�tree is organized as a class template with three types of
parameters T� X� and Y that are used to represent di�erent kinds of information	 Information
is stored in special container class templates and every instance of a container class is
associated with exactly one object representing a node in the PQ�tree	

The abstract base class template basicKey�T�X�Y� is the base class for all container
classes that carry information of the nodes	 The class key�T�X�Y�� nodeInfo�T�X�Y��
and internal�T�X�Y� are derived classes of basicKey�T�X�Y�	 These three classes carry
information of nodes and an object of such a class is able to identify its corresponding node
in constant time and vice versa	 We distinguish three types of information�

 Information concerning only leaves are stored in the class template key�T�X�Y�	 The
parameter T belongs to this type of information and an object of type T is stored at
an object of type key�T�X�Y�	 An object of type key�T�X�Y� can be only assigned
to a leaf	
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 Information concerning any node are stored in the class template nodeInfo�T�X�Y�	
The parameter X belongs to this type of information and an object of type X is stored
at an object of type nodeInfo�T�X�Y�	 An object of type nodeInfo�T�X�Y� can be
assigned to any node	

 Information concerning only internal nodes are stored in the class template
internal�T�X�Y�	 The parameter Y is assigned to this type of information and an
object of type Y is stored at an object of type internal�T�X�Y�	 An object of type
internal�T�X�Y� can be only assigned to an internal node	

For less sophisticated applications such as the consecutive ones property problem� the last
two information types are usually not needed	 However� it is expected to store information
at every leaf� since by De�nition �	� every leaf in a PQ�tree corresponds to exactly one
element of the universal set U 	

The class template node�T�X�Y� is the abstract base class for all nodes in the PQ�tree	
This base class implements almost all functionality needed to handle the nodes	 There
exist two derived classes of node�T�X�Y�� the class template leaf�T�X�Y� and the class
template pqNode�T�X�Y�	 Objects of leaf�T�X�Y� correspond to leaves in a PQ�tree	
Objects of pqNode�T�X�Y� correspond to internal nodes in the PQ�tree� and are used for
P �nodes as well as for Q�nodes	 The reason for using one class template for two di�erent
types of internal nodes is the similar treatment in basic operations such as replacing or
exchanging nodes	 The pointer treatment for the children di�ers only marginal between P �
and Q�nodes	

The interface of the class template PQTree�T�X�Y� provides the reduction algorithm of
Booth and Lueker ������ and the constructive functions	 A function for initializing a PQ�
tree with a set U � a function that evokes a reduction with respect to a subset S � U and a
function for removing all allocated memory are public	 All constructive functions and most
of the functions needed to handle the template matching algorithm are virtual protected
member functions	 This allows necessary adaptions to di�erent algorithmic needs	

The implementation is easily applied to the consecutive ones property problem	 A user
only needs to allocate an array A of key�T�X�Y� using the parameter T to represent the
type of the elements of U 	 An instance of PQTree�T�X�Y� is allocated and initialized with
A	 Reducing a subset S in U is performed by calling the corresponding public function�
specifying the elements of the subset S in A	 If the PQ�tree was reducible with respect to S�
the frontier of the PQ�tree can be obtained by an extra call	 If all reductions are complete�
the class template PQTree�T�X�Y� does all necessary deallocation� except for the array A	

Ignored nodes can be adapted very easy by implementing a new class B that inherits the
abstract class template node�T�X�Y� and a new class C that inherits the class template
PQTree�T�X�Y�	 Special virtual functions that perform no action in PQTree�T�X�Y� and
are called by default within the template matching algorithms need to be overridden in C	
These virtual functions perform basic operations as getting the next �nonignored� sibling to
the left or right	 Overriding these functions is simple as only the new type of node needs to
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be considered	 The ignored nodes can be introduced into a PQ�tree using the constructive
functions	

The class template PQTree�T�X�Y� provides a �le interface to the Tree Interface �see
Leipert ������� that can be used to visualize the PQ�trees and all information that are
stored at the nodes	 New types of nodes are easily adapted to this interface by overriding
a virtual protected member function that is called by default	 The visualization of the
PQ�trees is useful during the development of new implementations	

It is dicult to obtain a large number of �good� instances of the consecutive ones property
problem in order to test the implementation	 We observed that even when we used very
large randomly generated instances� a lot of cases in the template matching algorithm
remained untested	 The PQ�trees that were produced by these instances were rather simple
with only a very few P �nodes and even fewer Q�nodes	 Hence� we decided to implement
the planarity test of Booth and Lueker ������ for testing the implementation	 Two reasons
led to this decision�

�	 The set U changes every time after leaves with respect to a vertex v of a graph G are
reduced	 Thus� the PQ�trees tend to be more complex� with a lot of P � and Q�nodes	


	 There exist good graph generators for both� planar and nonplanar graphs� e	g	� the
graph generator by Stamm�Wilbrandt ������ that constructs maximal planar graphs
and nonplanar graphs with one or two edges causing nonplanarity	 These generators
allow to produce a huge amount of test instances� and to verify not only the results
of the planarity test but especially the template matching algorithm	

The implementation of the planarity test was provided by Buchheim ������	 Other imple�
mentations based on our implementation of PQ�trees are�

�	 Physical mapping with end probes by Christof ������� implemented by Oswald
������	


	 Detection of obstructions to planarity by Karabeg ������� implemented by Vollen
������	

�	 Detection of violated comb inequalities when solving TSP instances with branch and
cut by Applegate et al� ������� our implementation used by St�ormer ������	

�	 The c�planarity test of Feng et al� ������� implemented by Liebel ������	

�	 The algorithm PLANARIZE by Jayakumar et al� ������ for computing a spanning
planar subgraph� our implementation	

�	 Level planar testing and embedding as discussed in this work	
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��� Level Planar Embedder

The level planarity testing and embedding algorithm is encapsulated in a class
LevelPlanarTest	 Its public interface consists� besides a constructor and a destructor�
of a function

int PlanarityTest�LeveledGraph	 graph


with a parameter of type LeveledGraph	� storing any level graph	 The graph does not
have to be proper� nor does it need to be connected	 The class LeveledGraph can be used
as an adapter to di�erent graph representations	

An overview on the design of the class structure is given in Fig	 �	�	 Except for the
class LeveledGraph� all classes are aggregated by LevelPlanarTest	 The class planGraph
provides an interface to the embedding algorithm of Chiba et al� ������ and was imple�
mented by Buchheim ������ using the PQ�tree implementation �see Section �	��	 The class
levelPlanGraph has been derived from planGraph and works as an adapter to the class
planGraph	

LevelPlanarTest

LevelPlanGraph

planGraphLevelPQTree�leafID�MLvalue�int�

PQTree�T�X�Y�

Leaves�Z� LeveledGraph

Figure �	�� Overview on the design of the class structure for a level planar
embedding algorithm	

The extended functionality of the PQ�trees that is needed in the level planar embedding
algorithm is encapsulated in the class LevelPQTree�leafID�MLvalue�int�� a derived class
from the class template PQTree�T�X�Y�	 The parameter T associated with the information
stored at the leaves of a PQ�tree is overloaded by a struct leafID that contains information
on the edge corresponding to a leaf	 The parameter X is overloaded by a class MLvalue that
is associated with the information stored at the nodes �leaves as well as interior nodes�
of a PQ�tree	 The class MLvalue is designed to handle the ML�values of the nodes of a
PQ�tree	
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The class LevelPlanarTest allocates for every nonisolated source of a level graph G �
�V�E� an instance of LevelPQTree�leafID�MLvalue�int�	 The access of the leaves in all
PQ�trees is managed by using a class template Leaves�Z�� where the parameter Z is over�
loaded by leveledGraphKey�MLvalue�int�		 The class leveledGraphKey�MLvalue�int�
is explained below	

The class LevelPlanarTest manages the complete level embedding algorithm as it
has been presented in Chapter �	�� controlling all three phases of LEVEL�PLANAR�
EMBED� including all reductions and merge operations	 Since all nodes of one PQ�tree
have to be added into another PQ�tree in a merge operation� LevelPlanarTest and
LevelPQTree�leafID�MLvalue�int� coexist in a tight binding	

A set of classes that is not shown in Fig	 �	� accompanies the class
LevelPQTree�leafID�MLvalue�int�	 Figure �	� gives an overview on the design of
the class structure associated with LevelPQTree�leafID�MLvalue�int�	 Although not
shown in the �gure� the class LevelPlanarTest aggregates all of these classes	

The class templates sinkFlag�leafID�X�Y� and Contact�leafID�X�Y� are derived from
the abstract base class template node�T�X�Y� and are associated with sink indica�
tors and contacts	 Instances of these classes are leaves in a PQ�tree and are consid�
ered as ignored nodes during the template matching algorithm	 The class template
leveledGraphInfo�T�MLvalue�Y�� derived from nodeInfo�T�X�Y� is a container class
designed to carry an instance of type MLvalue� representing the ML�value of a node in the
tree	 The class template leveledGraphKey�X�Y� is derived from graphKey�leafID�X�Y�

that itself is a derived class of key�T�X�Y�	 A leveledGraphKey�X�Y� is a container class
designed to carry an instance of type leafID� containing the information on the edge of
the graph G that is associated with an instance of leaf�T�X�Y�	 It is also used to keep
information on the vertex that is associated with an instance of sinkFlag�leafID�X�Y�
or Contact�leafID�X�Y�	 The usage of an intermediate class graphKey�leafID�X�Y� is
conditioned by other implementations based on PQTree�T�X�Y�	

��� Preface to Code Examples

Before we present the three example procedures of our implementation� a short intro�
duction to some basic pointer structure is given	 Furthermore� we give an overview on
some of the functions of the classes node�T�X�Y�� nodeInfo�T�X�Y�� PQTree�T�X�Y�� and
LevelPQTree�leafID�MLvalue�int�	 The overview is far from being complete	 It lists
only those functions that are used in the example procedures	

The children of a P �node X are organized in a circular doubly linked list	 The P �node
contains a pointer to one of its children� called the reference child 	 Via this pointer� the
node X is able to access its children	 Every child of the P �node X has a valid pointer to
its parent X	

The children Y�� Y�� � � � � Yl of a Q�node Y are organized in a doubly linked list as well	 This
list� however� is not circular	 The nodes Y� and Yl are the two end nodes of the list	 The
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LevelPlanarTest

LevelPQTree�leafID�MLvalue�int�

leveledGraphKey�X�Y�

key�T�X�Y� nodeInfo�T�X�Y�

PQTree�T�X�Y�

graphKey�leafID�X�Y�

leveledGraphInfo�T�MLvalue�Y�

Contact�leafID�X�Y�

node�T�X�Y�

sinkFlag�leafID�X�Y�

Figure �	�� Overview on the design of the class structure associated with
LevelPQTree�leafID�MLvalue�int�	

Q�node Y has a pointer to Y� and a pointer to Yl	 The children Y� and Yl are said to be the
endmost children of Y and both have a valid pointer to their parent Y 	 All other children
Y�� Y�� � � � � Yl��� do not have a valid pointer to their parent	 The pointers of these children
have not been updated in order to achieve linear running time in the implementation of
the PQ�trees	 In general� the parent pointer of a node Yi� 
 � i � l 	 �� points to a node
that does not exist anymore� and whose memory has been freed	 Using such a pointer leads
to runtime errors	 However� it is very easy to recognize if a node Z is an interior child of a
Q�node� and therefore has no valid pointer to its parent	 The node Z becomes a child of a
Q�node either in the application of the template matching algorithm or due to an external
operation such as adding a node to the tree	 In either case� it will be recognized if Z is a
child of a Q�node	 Due to Corollary �	�� we know that Z stays a child of a Q�node during
all subsequent applications of the template matching algorithm if no external operation
such as removing a node is performed	 Thus� we mark the node once as a child of a Q�node	
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Every node has a pointer to its left sibling �sibLeft and a pointer to its right sibling
�sibRight	 However� left and right has essentially absolutely no meaning in a PQ�tree	
We could also have used the terms yellow and green to denote the two di�erent pointers	
This becomes more evident since by construction of the template matching algorithm the
following situation may occur	 A node X points to it sibling Z via �sibRight and Z itself
also points to X via �sibRight	 Thus Z is right sibling of X and X is right sibling of
Z	 The class templates PQTree�T�X�Y� and node�T�X�Y� cover the usual handling of the
sibling pointers� provide iterators� and let a user not worry on the correct treatment of the
sibling pointers	

In an implementation of a level planar embedder� the handling of siblings is slightly more
complicated	 Let Y be a Q�node with children Y�� Y�� � � � � Yl	 As mentioned in the proof of
Theorem �	
�� the values ML�Yi� Yi���� i � �� 
� � � � � l	�� are not maintained at the parent
Y since the node Y cannot be accessed by any of its internal children Y�� Y�� � � � � Yl��

via a parent pointer	 These ML�values are maintained at the children Y�� Y�� � � � � Yl	 For
every node Yi� 
 � i � l 	 �� we maintain two values ML�Yi��� Yi�� and ML�Yi� Yi���	 At
Y�� and Yl we maintain the values ML�Y�� Y��� and ML�Yl��� Yl�� respectively	 The values
ML�Yi��� Yi�� and ML�Yi� Yi��� stored at Yi are associated with Yi��� and Yi��� respectively	
We store the ML�value that corresponds to the left sibling �sibLeft of Yi in �leftML and
ML�value that corresponds to the right sibling �sibRight of Yi in �rightML	 This allows
a clear identi�cation	 However� since left and right have no meaning in a PQ�tree� every
modi�cation of a PQ�tree involving a change at the ML�values is always accompanied by
a constant number of case distinctions in order to modify the ML�values correctly	

As mentioned in the previous section� the ML�values stored at a node Y are main�
tained in an object of type MLvalue	 This object is stored in an instance of type
nodeInfo�leafID�MLvalue�int� that is associated with the node Y 	 The MLvalue is kept
in a member variable of nodeInfo�leafID�MLvalue�int� called �userStructInfo	 The
variable �userStructInfo is the only public member of nodeInfo�leafID�MLvalue�int�
allowing direct access	

For the rest of Chapter � we make the following conventions for the documentation of
the example code	 When dereferencing functions of base classes� we omit the usage of the
template parameters	 The used template parameters are evident by context and this con�
vention allows easier reading	 Furthermore� we usually omit the parameters of the function�
writing instead ����
	 The used parameters are easily obtained from the displayed code
fragments	 Thus instead of writing� e	g	�

LevelPQTree�leafID�MLvalue�int���CheckIgnoredSiblings�

node�leafID�MLvalue�int�	 nodePtr� int LL� node�leafID�MLvalue�int�	 left�

node�leafID�MLvalue�int�	 right� int vertexNum� stack�edge	�	 newEdges


we write
LevelPQTree��CheckIgnoredSiblings����
 �

The code itself has been implemented using the literate programming system noweb by
Ramsey ����
� which allowed a nice documentation of the program in LATEX
e	
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����� Functions of node�T�X�Y�

int childCount�
 returns the number of children of a node	 Only valid for P �nodes	

int childCount�int
 sets the number of children of a node� and returns the new value	

node�T�X�Y�	 getEndmost�int
 returns a pointer to either the left or the right endmost
child of a Q�node	 The side is speci�ed by an integer	 If the node is a P �node� the
function returns a NULL pointer	

node�T�X�Y�	 getSib�int
 returns the adjacent sibling of a node either to its left or to
its right	 The side is speci�ed by an integer	 The returned sibling is allowed to be
either ignored or nonignored	

node�T�X�Y�	 getNextSib�node�T�X�Y�	
 returns an adjacent sibling of a node	 The
returned sibling is speci�ed by an adjacent sibling on the opposite side of the node	
The returned sibling is allowed to be either ignored or nonignored	

nodeInfo�T�X�Y�	 getNodeInfo�
 returns a pointer to the information container class
associated with a node	

node�T�X�Y�	 parent�
 returns a pointer to the parent of a node	 If the node is an
internal child of a Q�node� the returned value might be an invalid pointer	

node�T�X�Y�	 parent�node�T�X�Y�	
 sets a pointer to the parent of a node	 The func�
tion returns the new pointer	

int parentType�
 returns an integer specifying if the parent of a node is a P � or aQ�node	

int parentType�int
 sets an integer specifying if the parent of a node is a P � or a Q�node
and returns the value	

node�T�X�Y�	 referenceChild�
 returns a pointer to a child of a P �node	 If the node is
a Q�node� the function returns a NULL pointer	

int setNodeInfo�nodeInfo�T�X�Y�	
 sets a pointer of type nodeInfo�T�X�Y� to the
information container class associated with a node	 The function returns � for success�
and � otherwise	

int status�
 returns the status of a node	 The status may be empty� full� partial� or any
user de�ned status such as ignored	

void status�int
 sets the status of a node	

����� Functions of basicKey�T�X�Y�

void setNodePointer�node�T�X�Y�	
 sets a pointer to the node associated with the in�
formation class	
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����� Functions of PQTree�T�X�Y�

int addNodeToNewParent�node�T�X�Y�	 parent�node�T�X�Y�	 child
 adds a node
to a new parent	 The function returns � for success� and � otherwise	

int addNodeToNewParent����
 adds a node to a new parent specifying the left and the
right sibling of the node	 The input parameters are �in this order� node�T�X�Y�	

parent� node�T�X�Y�	 child� node�T�X�Y�	 leftBrother� and node�T�X�Y�	

rightBrother	 No siblings need to be speci�ed if the parent is a P �node	 The function
returns � for success� and � otherwise	

node�T�X�Y�	 clientNextSib�node�T�X�Y�	 nodePtr�node�T�X�Y�	 other
 is a vir�
tual function returning an adjacent nonignored sibling of a node nodePtr	 The re�
turned sibling is speci�ed by an adjacent nonignored sibling other on the opposite
side of the node	

node�T�X�Y�	 clientLeftEndmost�node�T�X�Y�	
 is a virtual function returning a non�
ignored endmost child on the left side of a Q�node	

node�T�X�Y�	 clientRightEndmost�node�T�X�Y�	
 is a virtual function returning a
nonignored endmost child on the right side of a Q�node	

node�T�X�Y�	 clientSibLeft�node�T�X�Y�	
 is a virtual function that returns the ad�
jacent nonignored sibling of a node to its left	

node�T�X�Y�	 clientSibRight�node�T�X�Y�	
 is a virtual function that returns the ad�
jacent nonignored sibling of a node to its right	

void exchangeNodes�node�T�X�Y� 	oldNode�node�T�X�Y� 	newNode
 replaces a node
oldNode by a node newNode in the PQ�tree	

stack�node�T�X�Y�	�	 partialChildrenStack�node�T�X�Y�	
 allows to get informa�
tion on the partial children of a node	

void removeChildFromSiblings�node�T�X�Y�	
 removes a node from the doubly linked
list of its children	 This does not a�ect the parent� unless the child was endmost child
of a Q�node or child of a P �node	

int template�P��node�T�X�Y�	
 is a virtual function that performs the template match�
ing P�	

int template�Q��node�T�X�Y� 	nodePtr�int isRoot
 is a virtual function that per�
forms the template matching Q
	 The integer isRoot is a �ag signalizing if nodePtr
is the root of the pertinent subtree	
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����� Functions of LevelPQTree�leafID�MLvalue�int�

int CheckIgnoredSiblings����
 is a function used for merge operations	 The
parameters are �in this order� node�leafID�MLvalue�int�	 nodePtr� int

LL� node�leafID�MLvalue�int�	 left� node�leafID�MLvalue�int�	 right� int
vertexNum� stack�edge	�	 newEdges	 The function is used in a merge operation
B or C� and is applied to a node nodePtr that is subject to the merge operation if
nodePtr is a full node� i	e	� the function applies Lemma �	�
	 The parameters left
and right denote the direct siblings to the left and to the right of nodePtr� respec�
tively	 The parameter vertexNum is an integer associated with the merge operation�
and newEdges is a stack that is used to store for every sink indicator that is con�
sidered for edge augmentation the corresponding new edge	 LL holds the LL�value of
the smaller PQ�tree that is inserted as sibling to nodePtr	 The return value is the
number of new edges	

int CheckIgnoredSiblings����
 is a function used for merge operations	 The
parameters are �in this order� node�leafID�MLvalue�int�	 nodePtr� int

LL� node�leafID�MLvalue�int�	 dir� int vertexNum� stack�edge	�	 newEdges	
The function is used in a merge operation D� and is applied to a node nodePtr that is
subject to the merge operation� i	e	� the function applies Lemma �	��	 The parameter
dir denotes the direct sibling of nodePtr on the side where the root of the subtree
has to be placed	 The parameters vertexNum� newEdges� LL and the return value are
de�ned as in the previous function	

node�leafID�MLvalue�int�	 CheckIgnoredSiblings����
 is a function used for
merge operations	 The parameters are �in this order� node�leafID�MLvalue�

int�	 nodePtr� int LL� node�leafID�MLvalue�int�	 left� node�leafID�

MLvalue�int�	 right� int vertexNum	 The function is used in a merge operation
B or C� and is applied to a node nodePtr that is subject to the merge operation if
nodePtr is a partial node and we need to add a contact to the PQ�tree associated
with the merge operation	 All used parameters have the same functionality as de�
scribed above	 The function returns a contact of type node�leafID�MLvalue�int�		
The contact stores all necessary information	

void setContactReductionValues�int
 informs a PQ�tree that a merge operation B or
C has been applied	 In the subsequent reduction after the merge operation� the PQ�
tree applies Rules I or II to contacts that become children of the root of the pertinent
subtree	

void connectContact����
 is a function used in templates Q
 and Q�	 The
parameters are �in this order� node�leafID�MLvalue�int�		 contact�
node�leafID�MLvalue�int�		 contactSib� node�leafID�MLvalue�int�		

leftCheck� node�leafID�MLvalue�int�		 rightCheck	 The function removes
a sequence of contacts and its adjacent reference sequence from the tree	 The
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function connectContact adds for every sink indicator that is detected in the
frontier of the reference sequence an edge directed towards the associated vertex of
the corresponding contact	 The function returns the direct siblings of the removed
sequence	 The pointers to these nodes are needed in order to perform correct update
operations on the ML�values	

void moveContact����
 is function used in template Q
	 The parameters are �in
this order� node�leafID�MLvalue�int�	 contact� node�leafID� MLvalue�int�	

contactSib� node�leafID�MLvalue�int�	 Qnode	 The function moves a sequence
of contacts that appears between a pertinent sequence to its new position according
to Rule II	

��� Code Example I Merge

The function Merge����
 is a protected member function of the class LevelPlanarTest	
Given two PQ�trees PQmax and PQapp and a pertinent leaf in both PQ�trees� the function
performs a merge operation on the trees	 The function traverses the path from the perti�
nent leaf towards the root in the tree PQmax with the lower LL�value in order to �nd an
appropriate position to place the tree PQapp with the larger LL�value into it	

The function applies the merge operations as described in �	�	�	 It does not check if the
form corresponding to PQapp is singular and can be added within an interior face or cavity
to the form corresponding to PQmax	 This is done by the calling function �which corresponds
to the function INSERT as described in �	��	

If necessary� the function Merge����
 adds contacts to the root of the pertinent subtree
as described in �	
	�	 Merge����
 does not reduce the pertinent leaves after successfully
applying one of the �ve merge operations	

����� Input Values

PQmax is a pointer of type LevelPQTree�leafID�MLvalue�int�	 It denotes the PQ�tree
with the lower LL�value	

PQapp is a pointer of type LevelPQTree�leafID�MLvalue�int�	 It denotes the PQ�tree
with the higher LL�value	 Thus the following inequality holds	

LL�PQmax� � LL�PQapp� �

flagMax is a pointer of type leveledGraphKey�MLvalue�int�	 It denotes the informa�
tion container of the pertinent leaf in the PQ�tree PQmax allowing the access of the
pertinent leaf in constant time	
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flagApp is a pointer of type leveledGraphKey�MLvalue�int�	 It denotes the informa�
tion container of the pertinent leaf in the PQ�tree PQapp allowing the access of the
pertinent leaf in constant time	

vertexNum is an integer describing the vertex associated with the merge operation	

����� Return Values

� if a merge operation was performed� � if no appropriate position in the PQ�tree PQmax
for inserting PQapp was found	 In the latter case� the graph is not level planar	

PQmax is a pointer of type LevelPQTree�leafID�MLvalue�int�	 It denotes the PQ�tree
with the lower LL�value	 If the merge operation was successful� PQmax contains the
complete tree PQapp as subtree	 A reduction of the pertinent leaves associated with
flagMax and flagApp is not performed by the function Merge����
	

PQapp is a pointer of type LevelPQTree�leafID�MLvalue�int�	 It denotes an empty
PQ�tree with no nodes	 Its memory is deallocated by the function Merge����
	

flagMax is a pointer of type leveledGraphKey�MLvalue�int� that is left unchanged by
Merge����
	

flagApp is a pointer of type leveledGraphKey�MLvalue�int� that is left unchanged by
Merge����
	

����� Variables

�nodePtr is a pointer of type node�leafID�MLvalue�int�	 It denotes a node on the path
from the leaf corresponding to flagMax to the root of PQmax	

�parent is a pointer of type node�leafID�MLvalue�int�	 It denotes the parent of
�nodePtr	

�sibling is a pointer of type node�leafID�MLvalue�int�	 It denotes a sibling of
�nodePtr� if �nodePtr is a child of a Q�node	

�contact is a pointer of type node�leafID�MLvalue�int�	 It denotes a new contact that
eventually has to be introduced during the merge operations B or C	

�newQnode is a pointer of type pqNode�leafID�MLvalue�int�	 It denotes a new Q�node
that is introduced into the PQ�tree PQmax by the merge operation	

�nodeInfoPtr is a pointer of type leveledGraphInfo�leafID�int�	 In case a new Q�
node �newQnode is allocated by Merge����
� the �newQnode needs to be equipped
with an information container class of type leveledGraphInfo�leafID�int�	
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�found is an integer that is initialized with � and is set to � if the merge operation was
performed successfully	

�leftML is an integer holding the ML�value between �nodePtr and the sibling of �nodePtr
that is accessible via the left sibling pointer of �nodePtr	

�rightML is an integer holding the ML�value between �nodePtr and the sibling of
�nodePtr that is accessible via the right sibling pointer of �nodePtr	

�nodeID is an integer used to determine the identi�cation number of �newQnode	

�onlyLeaf is an integer that is � as long as �nodePtr holds a full node	 The value of
�onlyLeaf is changed to � if �nodePtr becomes partial	 In case that �onlyLeaf is
� during a merge operation B or C� Lemma �	�
 is applied and no contact needs to
be added	

�dummyMLvalue is an instance of the class MLvalue storing the ML�values of �newQnode	

����� Code�Body

The function Merge����
 executes a while�loop that traverses the path from the leaf
associated with flagMax towards the root of PQmax	 The variable �nodePtr denotes the
current node on this path	 The function exits from the while loop if one of the following
two cases applies	

 A merge operation can be performed on �nodePtr and its �parent	

 �nodePtr is an interior child of a Q�node and neither merge operation C nor D can be
performed	 According to the proof of Theorem �	
�� the graph G is not level planar	

If a merge operation has been applied successfully� function Merge����
 exits the while

loop returning �	 If no merge operation was performed successfully� Merge����
 exits the
while loop returning �	

hMergei�
����������������������������������������������������������������������������

Merge

����������������������������������������������������������������������������

int LevelPlanarTest��Merge�LevelPQTree� PQmax�

LevelPQTree� PQapp�

leveledGraphKey�MLvalue�int�� flagMax�

leveledGraphKey�MLvalue�int�� flagApp�

int vertexNum	




node�leafID�MLvalue�int�� �nodePtr � flagMax�nodePointer�	�
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node�leafID�MLvalue�int�� �parent � NULL�

node�leafID�MLvalue�int�� �sibling � NULL�

pqNode�leafID�MLvalue�int�� �newQnode � NULL�

node�leafID�MLvalue�int�� �contact � NULL�

leveledGraphInfo�leafID�int�� �nodeInfoPtr � NULL�

int �found � ��

int �leftML � ��

int �rightML � ��

int �nodeID � ��

int �onlyLeaf � ��

MLvalue �dummyMLvalue�

�nodeID � max�PQmax��identificationNumber�PQapp��identificationNumber	�

while ���found	




�leftML � �nodePtr�getNodeInfo�	��userStructInfo��leftML�

�rightML� �nodePtr�getNodeInfo�	��userStructInfo��rightML�

�parent � �nodePtr�parent�	�

if ��parent �� NULL	




hMerge� Perform merge operation E i
�

else if ��nodePtr�parentType�	 �� P�NODE	




hMerge� �nodePtr is a child of P �nodei
�

else if �PQmax�clientSibLeft��nodePtr	 �� NULL ��

PQmax�clientSibRight��nodePtr	 �� NULL	




hMerge� �nodePtr is an endmost child of Q�nodei
�

else




hMerge� �nodePtr is an interior child of Q�nodei
�

if ��found	




Update�PQmax�PQapp�flagMax�flagApp	�

return ��

�

�

return ��

�
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����� Processing �nodePtr

The application of one of the merge operations is dependent on the situation found at
�nodePtr	 The following three code fragments examine if �nodePtr is a child of a P �node�
an endmost child of Q�node� or an internal child of a Q�node	 Depending on the case that
applies� we either need to proceed further up the tree� or a valid decisions can be made
on the merge operation that has to be applied� or we detect that the graph G is not level
planar	

�nodePtr is a child of P �node

The parent of �nodePtr is a P �node	 If

ML��parent� � LL�PQapp�

holds� merge condition A applies	 If

ML��parent� 
 LL�PQapp�

holds� the tree PQapp cannot be merged into PQmax at this position	 We continue moving up
towards the root of PQmax in order to �nd an appropriate location for merging the smaller
PQ�tree into the larger one	

hMerge� �nodePtr is a child of P �nodei�
if ��parent�getNodeInfo�	��userStructInfo��PnodeML � PQapp��LL	




hMerge� Perform merge operation Ai
�

else




if ��parent�childCount�	 � �	

�onlyLeaf � ��

�nodePtr � �parent�

�

�nodePtr is an endmost child of Q�node

The parent of �nodePtr is a Q�node and �nodePtr is an endmost child of its parent	 The
code fragment checks if merge condition B applies	 In case condition B does not apply� we
proceed further up the tree	

hMerge� �nodePtr is an endmost child of Q�nodei�
if ��leftML �� � �� �rightML �� �	

cerr �� �ERROR in MERGE� endmost child �

�� �with illegal NONZERO MLvalues detected�� �� endl

�� �Appending large PQTree� � �� PQmax��ID
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�� � and small PQTree � �� PQapp��ID �� endl�

else if ���leftML �� � �� �leftML � PQapp��LL	 ��

��rightML �� � �� �rightML � PQapp��LL		




hMerge� Perform merge operation Bi
�

else




if �PQmax�clientSibLeft��nodePtr	 �� NULL ��

PQmax�clientSibRight��nodePtr	 �� NULL	

�onlyLeaf � ��

�nodePtr � �parent�

�

�nodePtr is an interior child of Q�node

The parent of �nodePtr is a Q�node and �nodePtr is an interior child of its parent	 Thus�
�nodePtr does not know its parent	 If it is not possible to apply either merge operation C
or D to �nodePtr� the graph G is not level planar	

hMerge� �nodePtr is an interior child of Q�nodei�
if ��leftML � PQapp��LL �� �rightML � PQapp��LL	




hMerge� Perform merge operation C i
�

else if ��leftML � PQapp��LL	




hMerge� Perform merge operation D� lefti
�

else if ��rightML � PQapp��LL	




hMerge� Perform merge operation D� righti
�

else

return ��

����� Merge Operations

Merge Operation A

The parent of �nodePtr is a P �node such that

ML��parent� � LL�PQapp� �

The root of PQapp is added to �nodePtr	 The Merge����
 function �nishes successfully	
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hMerge� Perform merge operation Ai�
PQmax�addNodeToNewParent��parent�PQapp��root��nodePtr�NULL	�

�found � ��

Merge operation B

Node �nodePtr is an endmost child of a Q�node and either

ML��nodePtr��nodePtr�getSib�LEFT
� � LL�PQapp�

or

ML��nodePtr��nodePtr�getSib�RIGHT
� � LL�PQapp�

holds	 The node �nodePtr is replaced by a new Q�node �newQnode	 The �newQnode gets
as children �nodePtr� the root of PQapp� and if necessary a �contact	 The Merge����


function then �nishes successfully	

In case that �nodePtr is a full node� the value of �onlyLeaf is �� and Lemma �	�
 is applied	
This is done by calling the member function LevelPQTree��CheckIgnoredSiblings����


of PQmax	 One of the parameters is �newEdges that is a class member of LevelPlanarTest
collecting new edges that are added to the graph in order to construct a hierarchy	

In case that �nodePtr is not a full node� the value of �onlyLeaf is �� and we possibly
have to add a contact that is associated with this merge operation	 Calling the member
function LevelPQTree��CheckIgnoredSiblings����
 of PQmax allocates a new contact�
and determines the reference sequence of the contact� equipping it with the necessary
information	

The code di�ers whether �nodePtr is the left endmost or the right endmost child of its
�parent	

hMerge� Perform merge operation Bi�
if ��onlyLeaf	

PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�LEFT	�

�nodePtr�getSib�RIGHT	�

vertexNum��newEdges	�

else

�contact � PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�LEFT	�

�nodePtr�getSib�RIGHT	�

vertexNum	�

�newQnode � new pqNode�leafID�MLvalue�int���nodeID���Q�NODE�EMPTY	�

PQmax�exchangeNodes��nodePtr��newQnode	�

PQmax�addNodeToNewParent��newQnode��nodePtr	�
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PQapp�removeChildFromSiblings�PQapp��root	�

if ��leftML �� �	

PQmax�addNodeToNewParent��newQnode�PQapp��root�NULL��nodePtr	�

else

PQmax�addNodeToNewParent��newQnode�PQapp��root��nodePtr�NULL	�

The node �nodePtr is now the right endmost child �if �leftML �� �� or the left end�
most child �if �rightML �� �� of �newQnode and PQapp��root is the left or right
endmost child of �newQnode	 In case that a contact has been created by a call of
LevelPQTree��CheckIgnoredSiblings����
� we add the �contact as an endmost child
to �newQnode next to PQapp��root	

If �nodePtr is a Q�node having already contacts� the Rules I or II described in Sec�
tion �	
	� have to be applied to these contacts during the application of template Q
	
However� the template Q
 removes every contact found in the pertinent sequence� un�
less the PQ�tree PQmax is informed to apply Rules I or II to �nodePtr	 A function
LevelPQTree��setContactReductionValues�int
 is called	 The values LEFT or RIGHT

describe the side of �newQnode� where the root of PQapp has been added as an end�
most child	 If a sequence of contacts that have been children of �nodePtr is found
within the pertinent sequence as children of �newQnode after reducing the PQ�tree�
these contacts are moved to the prescribed endmost side applying Rule II	 The function
LevelPQTree��setContactReductionValues�int
 is called independent on the introduc�
tion of a new �contact	 By De�nition �	
� the current merge operation and the merge
operation associated with any contact that is a child of �nodePtr are concatenations	

hMerge� Perform merge operation Bi��
if ��contact	




if ��leftML	

PQmax�addNodeToNewParent��newQnode��contact�NULL�PQapp��root	�

else

PQmax�addNodeToNewParent��newQnode��contact�PQapp��root�NULL	�

�

if ��leftML	

PQmax�setContactReductionValues�LEFT	�

else

PQmax�setContactReductionValues�RIGHT	�

�nodeInfoPtr � new leveledGraphInfo�leafID�int���dummyMLvalue	�

�newQnode�setNodeInfo��nodeInfoPtr	�

�nodeInfoPtr�setNodePointer��node�leafID�MLvalue�int��	 �newQnode	�

�newQnode�getNodeInfo�	��userStructInfo�set��leftML��rightML��	�

�newQnode�getNodeInfo�	��userStructInfo��vertex �

�nodePtr�getNodeInfo�	��userStructInfo��vertex�

if ��leftML	

PQapp��root�getNodeInfo�	��userStructInfo��rightML � �leftML�
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else

PQapp��root�getNodeInfo�	��userStructInfo��leftML � �rightML�

�found � ��

Merge Operation C

The node �nodePtr is an interior child of a Q�node and the following inequalities both
hold	

ML��nodePtr��nodePtr�getSib�LEFT
� � LL�PQapp� �

ML��nodePtr��nodePtr�getSib�RIGHT
� � LL�PQapp� �

The node �nodePtr is replaced by a new Q�node �newQnode	 The �newQnode gets as chil�
dren �nodePtr� the root of PQapp� and if necessary a �contact	 The Merge����
 function
then �nishes successfully	

In case that �nodePtr is a full node� the value of �onlyLeaf is �� and Lemma �	�
 is applied	
This is done by calling the member function LevelPQTree��CheckIgnoredSiblings����


of PQmax	 One of the parameters is �newEdges that is a class member of LevelPlanarTest
collecting all new edges that have to be added to the graph in order to construct a hierarchy	

In case that �nodePtr is not a full node� the value of �onlyLeaf is �� and we possibly
have to add a contact that is associated with this merge operation	 Calling the member
function LevelPQTree��CheckIgnoredSiblings����
 of PQmax allocates a new contact�
and determines the reference sequence of the contact� equipping it with the necessary
information	

hMerge� Perform merge operation C i�
if ��onlyLeaf	

PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�LEFT	�

�nodePtr�getSib�RIGHT	�

vertexNum��newEdges	�

else

�contact � PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�LEFT	�

�nodePtr�getSib�RIGHT	�

vertexNum	�

�newQnode � new pqNode�leafID�MLvalue�int���nodeID���Q�NODE�EMPTY	�

PQmax�exchangeNodes��nodePtr��newQnode	�

PQapp�removeChildFromSiblings�PQapp��root	�

PQmax�addNodeToNewParent��newQnode��nodePtr	�

PQmax�addNodeToNewParent��newQnode�PQapp��root��nodePtr�NULL	�

The node �nodePtr is the new left endmost child of �newQnode� and PQapp��root is
the right endmost child of �newQnode	 In case that a contact has been created by a call of
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LevelPQTree��CheckIgnoredSiblings����
 we add the �contact as right endmost child
to �newQnode next to the root of PQapp	

If �nodePtr is a Q�node having already contacts� the Rules I or II as described in
Section �	
	� have to be applied to these contacts during the application of tem�
plate Q
	 However� the template Q
 removes every contact found in the pertinent se�
quence� unless the PQ�tree PQmax is informed to apply Rules I or II to �nodePtr	 A
function LevelPQTree��setContactReductionValues�int
 is called	 The value RIGHT

holds the side of �newQnode� where the root of PQapp has been added as an end�
most child	 If a sequence of contacts that have been children of �nodePtr is found
within the pertinent sequence as children of �newQnode after reducing the PQ�tree�
these contacts are moved to the right endmost side applying Rule II	 The function
LevelPQTree��setContactReductionValues�int
 is called independent on the introduc�
tion of a new �contact	 By De�nition �	
� the current merge operation and the merge
operation associated with any contact that is a child of �nodePtr are concatenations	

hMerge� Perform merge operation C i��
if ��contact	

PQmax�addNodeToNewParent��newQnode��contact�PQapp��root�NULL	�

PQmax�setContactReductionValues�RIGHT	�

�nodeInfoPtr � new leveledGraphInfo�leafID�int���dummyMLvalue	�

�newQnode�setNodeInfo��nodeInfoPtr	�

�nodeInfoPtr�setNodePointer��node�leafID�MLvalue�int��	 �newQnode	�

�newQnode�getNodeInfo�	��userStructInfo�set��leftML��rightML��	�

�newQnode�getNodeInfo�	��userStructInfo��vertex

� �nodePtr�getNodeInfo�	��userStructInfo��vertex�

�nodePtr�getNodeInfo�	��userStructInfo��leftML � ��

if ��rightML � �leftML	




�nodePtr�getNodeInfo�	��userStructInfo��rightML � �leftML�

�PQapp��root�getNodeInfo�	��userStructInfo��leftML � �leftML�

�

else

�PQapp��root�getNodeInfo�	��userStructInfo��leftML ��rightML�

�found � ��

Merge Operation D� left

The node �nodePtr is an interior child of a Q�node and the following inequalities both
hold	

ML��nodePtr��nodePtr�getSib�LEFT
� � LL�PQapp� �

ML��nodePtr��nodePtr�getSib�RIGHT
� 
 LL�PQapp� �
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The root of PQapp is placed between �nodePtr and its left sibling	 The application of
Lemma �	�� associated with the merge operation D is performed by calling the member
function LevelPQTree��CheckIgnoredSiblings����
 of PQmax	 The function Merge����

then �nishes successfully	

hMerge� Perform merge operation D� lefti�
PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�LEFT	�

vertexNum��newEdges	�

�sibling � �nodePtr�getSib�LEFT	�

PQapp�removeChildFromSiblings�PQapp��root	�

PQmax�addNodeToNewParent�NULL�PQapp��root��sibling��nodePtr	�

PQapp��root�getNodeInfo�	��userStructInfo��leftML � �leftML�

PQapp��root�getNodeInfo�	��userStructInfo��rightML � �leftML�

PQapp��root�parentType�Q�NODE	�

�found � ��

Merge Operation D� right

The node �nodePtr is an interior child of a Q�node and the following inequalities both
hold	

ML��nodePtr��nodePtr�getSib�RIGHT
� � LL�PQapp� �

ML��nodePtr��nodePtr�getSib�LEFT
� 
 LL�PQapp� �

The root of PQapp is placed between �nodePtr and its right sibling	 The application of
Lemma �	�� associated with the merge operation D is performed by calling the member
function LevelPQTree��CheckIgnoredSiblings����
 of PQmax	 The function Merge����

then �nishes successfully	

hMerge� Perform merge operation D� righti�
PQmax�CheckIgnoredSiblings��nodePtr�PQapp��LL�

�nodePtr�getSib�RIGHT	�

vertexNum��newEdges	�

�sibling � �nodePtr�getSib�RIGHT	�

PQapp�removeChildFromSiblings�PQapp��root	�

PQmax�addNodeToNewParent�NULL�PQapp��root��nodePtr��sibling	�

PQapp��root�getNodeInfo�	��userStructInfo��leftML � �rightML�

PQapp��root�getNodeInfo�	��userStructInfo��rightML � �rightML�

PQapp��root�parentType�Q�NODE	�

�found � ��
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Merge Operation E

The node �nodePtr is a pointer to the root of the PQ�tree PQmax	 Thus merge condition E
applies	 A new Q�node �newQnode is allocated	 The roots of both trees PQmax and PQapp

are added as children to �newQnode	 The new Q�node then becomes root of PQmax	 The
function Merge����
 then �nishes successfully	

hMerge� Perform merge operation E i�
�newQnode � new pqNode�leafID�MLvalue�int���nodeID���Q�NODE�EMPTY	�

PQmax�exchangeNodes��nodePtr��newQnode	�

PQmax��root � �newQnode�

PQapp�removeChildFromSiblings�PQapp��root	�

PQmax�addNodeToNewParent��newQnode��nodePtr	�

PQmax�addNodeToNewParent��newQnode�PQapp��root��nodePtr�NULL	�

�nodeInfoPtr � new leveledGraphInfo�leafID�int���dummyMLvalue	�

�newQnode�setNodeInfo��nodeInfoPtr	�

�nodeInfoPtr�setNodePointer��node�leafID�MLvalue�int��	 �newQnode	�

�newQnode�getNodeInfo�	��userStructInfo�set������	�

�found � ��

��� Code Example II Template P�

The function template�P�����
 is a protected member function of the class
LevelPQTree�leafID�MLvalue�int�	 The function overloads the virtual protected func�
tion PQTree��template�P�����
	 The class LevelPQTree�leafID�MLvalue�int� over�
loads the function in order

 to guarantee correct application of template P�� and

 to update ML�values	

The function collects pointers to all nodes of the PQ�tree that are a�ected by the template
P�	 After calling the function PQTree��template�P�����
� it applies all necessary update
operations	

����� Input Values

nodePtr is a pointer of type node�leafID�MLvalue�int� and the function
template�P�����
 tries to apply the template P� to nodePtr and its children	

����� Return Values

� if the the template P� was applied successfully to nodePtr and its children� � otherwise	
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����� Variables

�partialChild is a pointer of type node�leafID�MLvalue�int�	 It denotes a partial
child of nodePtr before template P� is applied	 By construction� �partialChild is
a Q�node	

�fullNode is a pointer of type node�leafID�MLvalue�int�	 It denotes the endmost full
node of �partialChild after template P� has been applied	

�emptyNode is a pointer of type node�leafID�MLvalue�int�	 It denotes the endmost
empty node of �partialChild after template P� has been applied	

�fakeEndmost is a pointer of type node�leafID�MLvalue�int�	 It denotes a fake endmost
empty node of �partialChild after template P� has been applied	 The pointer is
needed to cover a special case	 During the application of template P�� the empty
children of nodePtr remain children of nodePtr� and nodePtr is placed at the
empty end of �partialChild	 This prevents the template P� from scanning the
empty children	 If nodePtr is a P �node having only one empty child the function
call PQTree��template�P��nodePtr
 does not add nodePtr at the empty end of
�partialChild	 It places the only empty child of nodePtr at the empty end of
�partialChild	 The template P� applies this strategy in order to ensure that only
proper PQ�trees are constructed	 However� in our level planar embedding algorithm�
nodePtr may have ignored children	 The function PQTree��template�P�����
 no�
tices that nodePtr has just one empty child� and it adds an arbitrary child �due to
the technique of not scanning the empty children this might be an ignored node� to
the empty end of �partialChild	 We access this child via the pointer �fakeEndmost�
and apply a correction step	

�nodeInfoF is a pointer of type leveledGraphInfo�leafID�int�	 In case �fullNode is
a new P �node that has been allocated by PQTree��template�P�����
 in order to
gather all full children of nodePtr� the �fullNode needs to be equipped with an
information container class of type leveledGraphInfo�leafID�int�	

�dummyMLvalue is an instance of type MLvalue and stores the information of �fullNode
if �fullNode was allocated by PQTree��template�P�����
	

�ml is an integer storing the ML�value of the P �node nodePtr	 This value will be the
ML�value between a new empty endmost child and the former empty endmost child
of �partialChild as well as between the a new full endmost child of �partialChild
and the former full endmost child of �partialChild	 It is also the ML�value that is
stored in �dummyMLvalue	 Although the full nodes are removed from the tree after
successfully completing the reduction� the ML�values of the full children need to
be updated properly since the PML� and the QML�values need to be computed or
updated	
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�fullCount is an integer denoting the number of full children of nodePtr before template
P� is applied	 This number may be �	

�emptyCount is an integer denoting the number of empty children of nodePtr before
template P� is applied	 This number may be �	

�side is an integer denoting the full end of �partialChild	

����� Code�Body

The function template�P�����
 keeps certain information before executing the function
PQTree��template�P�����
	 If the template reduction P� was performed successfully�
function template�P�����
 applies the necessary update operations	

htemplate�P�i�
����������������������������������������������������������������������������

template�P�

����������������������������������������������������������������������������

int LevelPQTree��template�P��node�leafID�MLvalue�int�� nodePtr	




node�leafID�MLvalue�int�� �partialChild � NULL�

node�leafID�MLvalue�int�� �fullNode � NULL�

node�leafID�MLvalue�int�� �emptyNode � NULL�

node�leafID�MLvalue�int�� �fakeEndmost � NULL�

leveledGraphInfo�leafID�int�� �nodeInfoF � NULL�

int �ml � ��

int �emptyCount � ��

int �fullCount � ��

int �side � ��

MLvalue �dummyMLvalue�

htemplate�P�� Preparationi
if �PQTree�leafID�MLvalue�int���template�P��nodePtr		




htemplate�P�� Updatei
�

else

return ��

�

����� Preparation of Template P�

Before calling the function PQTree��template�P�����
 for applying the template P� to
nodePtr� the following code fragment collects information on�
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 the ML�value of nodePtr in �ml�

 a partial child of nodePtr in �partialChild�

 the number of full children of nodePtr in �fullCount� and

 the number of empty children of nodePtr in �emptyCount	

htemplate�P�� Preparationi�
�ml � nodePtr�getNodeInfo�	��userStructInfo��PnodeML�

partialChildrenStack�nodePtr	�startAtBottom�	�

if ��partialChildrenStack�nodePtr	�readLast�		

�partialChild � partialChildrenStack�nodePtr	�readNext�	�

�fullCount � fullChildrenStack�nodePtr	�count�	�

�emptyCount � nodePtr�childCount�	  partialChildrenStack�nodePtr	�count�	

 �fullCount�

����� Update after Template P�

After PQTree��template�P�����
 has been successfully applied� the necessary updates
are performed	 The node �partialChild now occupies the position of nodePtr in the
PQ�tree	 The full and empty children of nodePtr are gathered at the full and empty
end of �partialChild	 We �rst determine the full and the empty endmost child of
�partialChild	

htemplate�P�� Updatei�
if �clientLeftEndmost��partialChild	�status�	 �� FULL	




�fullNode � clientLeftEndmost��partialChild	�

�emptyNode � clientRightEndmost��partialChild	�

�side � LEFT�

�

else




�fullNode � clientRightEndmost��partialChild	�

�emptyNode � clientLeftEndmost��partialChild	�

�side � RIGHT�

�

If the number of full children of nodePtr �stored in �fullCount� was at least �� the
�partialChild has a new full endmost child and the ML�values of this child have to be
set or updated	 Since �partialChild occupies the position of nodePtr in the PQ�tree� the
ML�values of �partialChild are updated as well	 The case where �partialChild has a
new empty endmost child is considered in the next code fragment	

htemplate�P�� Updatei��
if ��fullCount � �	
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htemplate�P�� Update new full endmost nodei
�

�partialChild�getNodeInfo�	��userStructInfo��leftML �

nodePtr�getNodeInfo�	��userStructInfo��leftML�

�partialChild�getNodeInfo�	��userStructInfo��rightML �

nodePtr�getNodeInfo�	��userStructInfo��rightML�

If the number of empty children of nodePtr �stored in �emptyCount� was at least �� the
�partialChild has a new empty endmost child� and the ML�values of this child are up�
dated	

If this case does not apply� nodePtr did not have any empty children	 However� nodePtr
might have had some ignored children	 This is tested using the reference pointer of
nodePtr to the doubly linked list of children	 If the pointer is not the NULL pointer�
there exists at least one ignored child	 The node nodePtr was considered by the func�
tion PQTree��template�P�����
 to be removed from the tree	 We reinsert nodePtr at
the full end of the partial child	 By applying this strategy� we make sure that the sink
indicators in the frontier of nodePtr are in the pertinent subtree	 This is a legal operation�
since they were children of the P �node nodePtr	 Therefore� it was possible to permute
them within the sequence of pertinent leaves before applying template P�	 Thus these sink
indicators can be considered for edge augmentation according to Corollary �	�	

htemplate�P�� Updatei��
if ��emptyCount �� �	




htemplate�P�� Update new empty endmost nodei
�

else if �nodePtr�status�	 �� TO�BE�DELETED ��

nodePtr�referenceChild�	 �� NULL	




if ��side �� LEFT	

addNodeToNewParent��partialChild�nodePtr�NULL�

�partialChild�getEndmost��side		�

else if ��side �� RIGHT	

addNodeToNewParent��partialChild�nodePtr�

�partialChild�getEndmost��side	�NULL	�

nodePtr�status�IGNORED	�

�

return ��

The partial node �partialChild has a new full endmost child stored in �fullNode and
the ML�values of �fullNode have to be updated	 Two cases apply	

�i� The node nodePtr had only one full child and no full P �node has been allocated by
PQTree��template�P�����
	 The ML�values of �fullNode are updated	

�ii� The node nodePtr had at least two full children and a new full P �node has been
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allocated by PQTree��template�P�����
	 The new P �node �fullNode is equipped
with a container class of type leveledGraphInfo�leafID�int� and the ML�values
of �fullNode are set	

The �rst case can be recognized by the existence of a container class of type
leveledGraphInfo�leafID�int� associated with �fullNode since �fullNode was an ex�
isting node in the PQ�tree when entering the function PQTree��template�P�����
	 The
second case is recognized by the absence of an information class associated with �fullNode	

htemplate�P�� Update new full endmost nodei�
if ��fullNode�getNodeInfo�	 �� NULL	




if �clientSibLeft��fullNode	 �� NULL	

�fullNode�getNodeInfo�	��userStructInfo��leftML � �ml�

else

�fullNode�getNodeInfo�	��userStructInfo��rightML � �ml�

�

else




�nodeInfoF � new leveledGraphInfo�leafID�int���dummyMLvalue	�

�fullNode�setNodeInfo��nodeInfoF	�

�nodeInfoF�setNodePointer��fullNode	�

if �clientSibLeft��fullNode	 �� NULL	

�fullNode�getNodeInfo�	��userStructInfo�set��ml����ml	�

else

�fullNode�getNodeInfo�	��userStructInfo�set����ml��ml	�

�

If �partialChild has a new full endmost child �stored in �fullNode� the ML�values of
�fullNodes adjacent nonignored sibling is updated	

htemplate�P�� Update new full endmost nodei��
if �clientSibLeft��fullNode	 �� NULL	




if �clientSibRight�clientSibLeft��fullNode		 �� �fullNode	

clientSibLeft��fullNode	�getNodeInfo�	�

�userStructInfo��rightML � �ml�

else

clientSibLeft��fullNode	�getNodeInfo�	�

�userStructInfo��leftML � �ml�

�

else




if �clientSibLeft�clientSibRight��fullNode		 �� �fullNode	

clientSibRight��fullNode	�getNodeInfo�	�

�userStructInfo��leftML � �ml�
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else

clientSibRight��fullNode	�getNodeInfo�	�

�userStructInfo��rightML � �ml�

�

The partial node �partialChild has a new empty endmost child stored in �emptyNode

and the ML�values of �emptyNode have to be updated	 Two cases apply	

�i� The node nodePtr had only one empty child and at least one ignored child	 The
function PQTree��template�P�����
 only noticed that nodePtr has just one empty
child� and added an arbitrary child to the empty end of �partialChild	 We access
this child via the pointer �fakeEndmost� and apply a correction step by replacing
�fakeEndmost with nodePtr� and adding �fakeEndmost as a child back to nodePtr	
After the correction is complete� the ML�values are updated by setting �emptyNode

� nodePtr� applying case �ii�	

�ii� Two subcases apply	

a� Node nodePtr is an endmost child of �partialChild	 Thus nodePtr ��

�emptyNode and either nodePtr has at least two empty� nonignored children
or the correction step of case �i� was applied	

b� An empty child of nodePtr is an endmost child of �partialChild	 Thus
�emptyNode equals the empty� nonignored child of nodePtr and nodePtr did
have exactly one empty child and no ignored children	

We update the ML�values of �emptyNode and its sibling	

htemplate�P�� Update new empty endmost nodei�
if ��emptyCount �� � �� nodePtr�referenceChild�	 �� NULL	




if ��side �� RIGHT	

�fakeEndmost � �partialChild�getEndmost�LEFT	�

else if ��side �� LEFT	

�fakeEndmost � �partialChild�getEndmost�RIGHT	�

exchangeNodes��fakeEndmost�nodePtr	�

if �nodePtr�referenceChild�	 ��

nodePtr�referenceChild�	�getNextSib�NULL		

�� nodePtr has two children

addNodeToNewParent�nodePtr��fakeEndmost�

nodePtr�referenceChild�	�

nodePtr�referenceChild�	�getNextSib�NULL		�

else

�� nodePtr has only one child

addNodeToNewParent�nodePtr��fakeEndmost�

nodePtr�referenceChild�	�NULL	�

nodePtr�childCount��	�
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nodePtr�status�EMPTY	�

�emptyNode � nodePtr�

�

if �clientSibLeft��emptyNode	 �� NULL	




�emptyNode�getNodeInfo�	��userStructInfo��leftML � �ml�

�emptyNode�getNodeInfo�	��userStructInfo��rightML � ��

if �clientSibRight�clientSibLeft��emptyNode		 �� �emptyNode	

clientSibLeft��emptyNode	�getNodeInfo�	�

�userStructInfo��rightML � �ml�

else

clientSibLeft��emptyNode	�getNodeInfo�	�

�userStructInfo��leftML � �ml�

�

else




�emptyNode�getNodeInfo�	��userStructInfo��rightML � �ml�

�emptyNode�getNodeInfo�	��userStructInfo��leftML � ��

if �clientSibLeft�clientSibRight��emptyNode		 �� �emptyNode	

clientSibRight��emptyNode	�getNodeInfo�	�

�userStructInfo��leftML � �ml�

else

clientSibRight��emptyNode	�getNodeInfo�	�

�userStructInfo��rightML � �ml�

�

��� Code Example III Template Q�

The function template�Q�����
 is a protected member function of the class
LevelPQTree�leafID�MLvalue�int�	 The function overloads the virtual protected func�
tion PQTree��template�Q�����
	 The class LevelPQTree�leafID�MLvalue�int� over�
loads the function in order

 to guarantee correct application of template Q
�

 to update ML�values� and

 to handle contacts	

The function collects pointers to all nodes of the PQ�tree that are a�ected by the template
Q
	 After calling the function PQTree��template�Q�����
� it applies all necessary update
operations	
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����� Input Values

nodePtr is a pointer of type node�leafID�MLvalue�int� and the function
template�Q�����
 tries to apply the template Q
 to nodePtr and its children	

isRoot is an integer that is � if nodePtr is the root of the pertinent subtree and �
otherwise	

����� Return Values

� if the the template Q
 was applied successfully to nodePtr and its children� � otherwise	

����� Variables

�partialChild is a pointer of type node�leafID�MLvalue�int�	 It denotes the partial
child of nodePtr before template Q
 is applied	 By construction� �partialChild is
a Q�node	

�partialLeft is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent
nonignored sibling on the left side of �partialChild before template Q
 is applied	

�partialLeftIgn is a pointer of type node�leafID�MLvalue�int�	 It denotes the adja�
cent ignored sibling on the left side of �partialChild before template Q
 is applied	

�partialRight is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent
nonignored sibling on the right side of �partialChild before template Q
 is applied	

�partialRightIgn is a pointer of type node�leafID�MLvalue�int�	 It denotes the ad�
jacent ignored sibling on the right side of �partialChild before template Q
 is
applied	

�fullEnd is a pointer of type node�leafID�MLvalue�int�	 It denotes the full endmost
nonignored child of �partialChild before template Q
 is applied	

�fullSib is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent non�
ignored sibling of �fullEnd before template Q
 is applied	

�fullIgn is a pointer of type node�leafID�MLvalue�int�	 It denotes the endmost ig�
nored child at the full end of �partialChild before template Q
 is applied	

�fullIgnSib is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent
sibling of �fullIgn before template Q
 is applied	 Node �fullIgnSib may be either
ignored or nonignored	

�emptyEnd is a pointer of type node�leafID�MLvalue�int�	 It denotes the empty end�
most nonignored child of �partialChild before template Q
 is applied	
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�emptySib is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent
nonignored sibling of �emptyEnd before template Q
 is applied	

�emptyIgn is a pointer of type node�leafID�MLvalue�int�	 It denotes the endmost
ignored child at the empty side of �partialChild before template Q
 is applied	

�emptyIgnSib is a pointer of type node�leafID�MLvalue�int�	 It denotes the adjacent
sibling of �emptyIgn before template Q
 is applied	 The node �emptyIgnSib may be
either ignored or nonignored	

�ignoredEmpty is a pointer of type node�leafID�MLvalue�int�	 It denotes an ignored
child of nodePtr that is marked empty in case nodePtr has only one nonignored child
�which is then the �partialChild�	 Marking an ignored child as empty allows us to
apply the function PQTree��template�Q�����
	

�mlLeft is an integer holding the ML�value between �partialChild and its adjacent left
sibling	

�mlRight is an integer holding the ML�value between �partialChild and its adjacent
right sibling	

�ignoredStatus is the original status of the node �ignoredEmpty	 After the template
Q
 has been applied� the original status is returned to �ignoredEmpty	

�success is an integer that is � if the template Q
 and the necessary update operations
have been applied successfully	

����� Code�Body

The function template�Q�����
 keeps certain information before executing the function
PQTree��template�Q�����
	 If the template reduction Q
 was performed successfully�
function template�Q�����
 applies the necessary update operations	

htemplate�Q�i�
����������������������������������������������������������������������������

template�Q�

����������������������������������������������������������������������������

int LevelPQTree��template�Q��node�leafID�MLvalue�int�� nodePtr�int isRoot	




node�leafID�MLvalue�int�� �partialChild � NULL�

node�leafID�MLvalue�int�� �partialLeft � NULL�

node�leafID�MLvalue�int�� �partialLeftIgn � NULL�

node�leafID�MLvalue�int�� �partialRight � NULL�

node�leafID�MLvalue�int�� �partialRightIgn � NULL�
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node�leafID�MLvalue�int�� �fullEnd � NULL�

node�leafID�MLvalue�int�� �fullSib � NULL�

node�leafID�MLvalue�int�� �fullIgn � NULL�

node�leafID�MLvalue�int�� �fullIgnSib � NULL�

node�leafID�MLvalue�int�� �emptyEnd � NULL�

node�leafID�MLvalue�int�� �emptySib � NULL�

node�leafID�MLvalue�int�� �emptyIgn � NULL�

node�leafID�MLvalue�int�� �emptyIgnSib � NULL�

node�leafID�MLvalue�int�� �ignoredEmpty � NULL�

int �mlLeft � ��

int �mlRight � ��

int �ignoredStatus � ��

int �success � ��

htemplate�Q�� Preparationi
if ��success ��

PQTree�leafID�MLvalue�int���template�Q��nodePtr�isRoot		




htemplate�Q�� Updatei
�

else

�success � ��

return �success�

�

����� Preparation of Template Q�

Before calling the function PQTree��template�Q�����
 for applying template Q
 to
nodePtr� pointers to all involved nodes need to be stored	 The nodes involved in tem�
plate Q
 are

 endmost ignored and nonignored children of �partialChild� and

 ignored and nonignored siblings of �partialChild	

The information on the nodes is needed in order to update ML�values between endmost
children of �partialChild and their new siblings	 If nodePtr does not have a partial child�
the template Q
 does not modify nodePtr and no update is necessary	

htemplate�Q�� Preparationi�
partialChildrenStack�nodePtr	�startAtBottom�	�

if ��partialChildrenStack�nodePtr	�readLast�		




�partialChild � partialChildrenStack�nodePtr	�readNext�	�

if �clientLeftEndmost��partialChild	�status�	 �� FULL	
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�fullEnd � clientLeftEndmost��partialChild	�

if ��partialChild�getEndmost�LEFT	�status�	�� CONTACT	

�fullIgn � �partialChild�getEndmost�LEFT	�

�emptyEnd � clientRightEndmost��partialChild	�

if ��partialChild�getEndmost�RIGHT	�status�	 �� IGNORED ��

�partialChild�getEndmost�RIGHT	�status�	 �� SINKFLAG ��

�partialChild�getEndmost�RIGHT	�status�	 �� CONTACT	

�emptyIgn � �partialChild�getEndmost�RIGHT	�

�

else




�fullEnd � clientRightEndmost��partialChild	�

if ��partialChild�getEndmost�RIGHT	�status�	�� CONTACT	

�fullIgn � �partialChild�getEndmost�RIGHT	�

�emptyEnd � clientLeftEndmost��partialChild	�

if ��partialChild�getEndmost�LEFT	�status�	 �� IGNORED ��

�partialChild�getEndmost�LEFT	�status�	 �� SINKFLAG ��

�partialChild�getEndmost�LEFT	�status�	 �� CONTACT	

�emptyIgn � �partialChild�getEndmost�LEFT	�

�

�fullSib � clientNextSib��fullEnd�NULL	�

�emptySib � clientNextSib��emptyEnd�NULL	�

if ��fullIgn	

�fullIgnSib � �fullIgn�getNextSib�NULL	�

if ��emptyIgn	

�emptyIgnSib � �emptyIgn�getNextSib�NULL	�

�mlLeft � �partialChild�getNodeInfo�	��userStructInfo��leftML�

�mlRight � �partialChild�getNodeInfo�	��userStructInfo��rightML�

�partialLeft � clientSibLeft��partialChild	�

�partialRight � clientSibRight��partialChild	�

If the ignored sibling of the left or the right side of �partialChild is a contact� the variable
�partialLeftIgn or �partialRightIgn� respectively� is not set	 This contact belongs by
construction to a sequence of endmost contacts of nodePtr� and no ML�values have to be
set between these contacts and �emptyIgn or between the contacts and �fullIgn	

htemplate�Q�� Preparationi��
if ��partialChild�getSib�LEFT	 �� �

�partialChild�getSib�LEFT	�status�	 �� IGNORED ��

�partialChild�getSib�LEFT	�status�	 �� SINKFLAG		

�partialLeftIgn � �partialChild�getSib�LEFT	�

if ��partialChild�getSib�RIGHT	 �� �
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�partialChild�getSib�RIGHT	�status�	 �� IGNORED ��

�partialChild�getSib�RIGHT	�status�	 �� SINKFLAG		

�partialRightIgn � �partialChild�getSib�RIGHT	�

�

If the node nodePtr has only one nonignored child� this nonignored child is apparently
the partial child stored in �partialChild	 Mark one of the ignored children of nodePtr
as full	 There must be at least one ignored child since the implementation avoids chains	
This allows the function PQTree��template�Q�����
 to perform correctly on nodePtr	
We remember to update the parent pointer of �fullEnd after the template matching has
been performed since this is not done by the template Q
 due to our trick	 The operation
is legal� since the subgraph corresponding to the Q�node nodePtr can be reversed without
a�ecting a level planar embedding of the rest of the graph	 Thus� sink indicators and
contacts that are descendants of nodePtr but not descendants of the �partialChild are
allowed to appear within the pertinent sequence	

htemplate�Q�� Preparationi��
if �clientRightEndmost�nodePtr	 �� clientLeftEndmost�nodePtr	 ��

clientRightEndmost�nodePtr	 �� clientLeftEndmost�nodePtr		




if �nodePtr�getEndmost�LEFT	�status�	 �� IGNORED ��

nodePtr�getEndmost�LEFT	�status�	 �� SINKFLAG	




�ignoredEmpty � nodePtr�getEndmost�LEFT	�

�ignoredStatus � nodePtr�getEndmost�LEFT	�status�	�

�ignoredEmpty�status�FULL	�

�

else if �nodePtr�getEndmost�RIGHT	�status�	 �� IGNORED ��

nodePtr�getEndmost�RIGHT	�status�	 �� SINKFLAG	




�ignoredEmpty � nodePtr�getEndmost�RIGHT	�

�ignoredStatus � nodePtr�getEndmost�RIGHT	�status�	�

�ignoredEmpty�status�FULL	�

�

else




�success � ��

cerr �� �ERROR �� LevelPQTree � template�Q�� �

�� �called on a node with apparently only �

�� �one child� � �� endl�

�

�
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����� Update after Template Q�

After PQTree��template�Q�����
 has been successfully applied� the necessary updates
are performed	 First� we check if an ignored child of nodePtr has been marked as empty
in order to allow PQTree��template�Q�����
 to perform correctly on nodePtr	 If such a
node exists� we reset its status back from EMPTY to the status it had before it was marked
as EMPTY	

htemplate�Q�� Updatei�
if ��ignoredEmpty	




�ignoredEmpty�status��ignoredStatus	�

�fullEnd�parent�nodePtr	�

�

If �partialChild existed� the ML�values between the endmost nonignored children of
�partialChild and their new siblings have to be updated	 This holds for both the full
and empty nodes	 The ML�values between the ignored endmost child at the empty end of
�partialChild and its new ignored sibling �if it exists� need to be updated as well	

The ML�values between ignored nodes in the pertinent subtree are not needed for com�
puting or updating the PML� and QML�values	 Furthermore� the ignored nodes in the
pertinent subtree are removed from the PQ�tree after the reduction is complete	 Thus� the
ignored endmost child at the full end of �partialChild and its new ignored sibling do not
need to be updated	

htemplate�Q�� Updatei��
if ��partialChild �� NULL	




htemplate�Q�� Update nonignored full endmost childreni
htemplate�Q�� Update nonignored empty endmost childreni
htemplate�Q�� Update contactsi
if ��emptyIgn	




htemplate�Q�� Update ignored empty endmost childreni
�

�

This code fragment updates the ML�values between the full endmost child of
�partialChild and its new adjacent nonignored sibling	

htemplate�Q�� Update nonignored full endmost childreni�
if ��partialRight �� clientNextSib��fullEnd��fullSib		




if ��partialRight �� clientSibRight��fullEnd		

�fullEnd�getNodeInfo�	��userStructInfo��rightML ��mlRight�

else if ��partialRight �� clientSibLeft��fullEnd		

�fullEnd�getNodeInfo�	��userStructInfo��leftML � �mlRight�

�
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else if ��partialLeft �� clientNextSib��fullEnd��fullSib		




if ��partialLeft �� clientSibLeft��fullEnd		

�fullEnd�getNodeInfo�	��userStructInfo��leftML � �mlLeft�

else if ��partialLeft �� clientSibRight��fullEnd		

�fullEnd�getNodeInfo�	��userStructInfo��rightML � �mlLeft�

�

else




�success � ��

cerr �� �ERROR �� LevelPQTree � template�Q�� �

�� �doubly linked list of children messed up�� �� endl�

�

This code fragment updates the ML�values between the empty endmost child of
�partialChild and its new adjacent nonignored sibling	

htemplate�Q�� Update nonignored empty endmost childreni�
if ��partialRight �� clientNextSib��emptyEnd��emptySib		




if ��partialRight �� clientSibRight��emptyEnd		

�emptyEnd�getNodeInfo�	��userStructInfo��rightML ��mlRight�

else if ��partialRight �� clientSibLeft��emptyEnd		

�emptyEnd�getNodeInfo�	��userStructInfo��leftML � �mlRight�

�

else if ��partialLeft �� clientNextSib��emptyEnd��emptySib		




if ��partialLeft �� clientSibLeft��emptyEnd		

�emptyEnd�getNodeInfo�	��userStructInfo��leftML � �mlLeft�

else if ��partialLeft �� clientSibRight��emptyEnd		

�emptyEnd�getNodeInfo�	��userStructInfo��rightML � �mlLeft�

�

else




�success � ��

cerr �� �ERROR �� LevelPQTree � template�Q�� �

�� � doubly linked list of children messed up�� �� endl�

�

The following code fragment updates contacts	 There are two cases two be considered

�i� contacts at the full end of �partialChild�

�ii� contacts at the empty end of �partialChild	

Case �i� is considered �rst	 Thus we have at least one contact within the pertinent sequence	
Three subcases apply	
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�i� a� A merge operation B or C has been applied right before the reduction that ap�
plies function template�Q�����
 to nodePtr and nodePtr is the new Q�node that
has been introduced by the function LevelPlanarTest��Merge����
	 Thus Rule
II has to be applied to the contacts within the pertinent sequence	 The function
template�Q�����
 notices this fact by checking if nodePtr is the root of the per�
tinent subtree �then isRoot �� �� and by checking if the private member variable
�contactFlag of the class LevelPQTree�leafID�MLvalue�int� is unequal to �	 A
function moveContact����
 is then called that places the sequence of contacts at
its predetermined position	

�i� b� No merge operation B or C was applied before the reduction corresponding to this
function call	 By Observation �	
� the contacts are adjacent to a reference sequence	
We apply Lemma �	�� by calling the function connectContact����
 that removes
the sequence of contacts and the adjacent reference sequence from the tree	 The
function connectContact����
 adds for every sink indicator that is detected in the
frontier of the reference sequence an edge directed towards the associated vertex of
the corresponding contact	

�i� c� A merge operation B or C has been applied right before the reduction that applies
function template�Q�����
 to nodePtr but nodePtr is not the root of the pertinent
subtree	 We proceed as in case �i� b�	

The parameters of the function connectContact����
 are references to the pointers of the
involved nodes since the contacts and their reference sequences are removed from the PQ�
tree	 The function connectContact returns the siblings of the contacts and the ignored
nodes in the reference sequences	 This feature is needed for the case �ii�	

htemplate�Q�� Update contactsi�
if ��fullIgn �� �fullIgn�status�	 �� CONTACT	




if �isRoot �� �contactFlag	

moveContact��fullIgn��fullIgnSib�nodePtr	�

else

connectContact���fullIgn���fullIgnSib�

��partialRightIgn���partialLeftIgn	�

�

The case �ii� considers a sequence of contacts at the empty end of �partialChild	 Three
subcases apply	

�ii� a� A merge operation B or C has been applied right before the reduction that applies
function template�Q�����
 to nodePtr and nodePtr is the new Q�node that has
been introduced by the function LevelPlanarTest��Merge����
	 Thus Rule I has
to be applied to the contacts within the pertinent sequence and nothing has to be
done	



���� Code Example III� Template Q� 
��

�ii� b� No merge operation B or C was applied before the reduction corresponding to
this function call	 By Observation �	
� the contacts are adjacent to a reference se�
quence	 We apply Lemma �	�� by calling the function connectContact����
	 Here
we make use of the parameters of the function connectContact����
 being refer�
ences to the pointers of the involved nodes	 The ML�values of the ignored siblings
on both sides of the removed sequence of nodes �contacts consecutively followed or
preceded by their left or right reference sequence� need to be updated	 The function
connectContact����
 returns these ignored nodes allowing us to update them as
ignored empty endmost children	

�ii� c� A merge operation B or C has been applied right before the reduction that applies
function template�Q�����
 to nodePtr but nodePtr is not the root of the pertinent
subtree	 We proceed as in case �ii� b�	

htemplate�Q�� Update contactsi��
if ��emptyIgn �� �emptyIgn�status�	 �� CONTACT �� ��isRoot �� �contactFlag		

connectContact���emptyIgn���emptyIgnSib�

��partialRightIgn���partialLeftIgn	�

The following code fragment updates the ML�value of the endmost ignored child �emptyIgn

of �partialChild	 The node �emptyIgn was on the empty side of �partialChild	 We do
not update the endmost ignored child of �partialChild on the full side of �partialChild
since this ignored child is within the pertinent subtree and will be removed after the
reduction is �nished successfully	

The code fragment is only accessed if �emptyIgn exists	 It checks if �partialRightIgn
and �emptyIgn are siblings	 If the nodes are not siblings� the code fragment checks if
�partialLeftIgn and �emptyIgn are siblings	 If this also does not hold� it is checked if
�emptyIgn is adjacent to one of the nonignored nodes �partialRight or �partialLeft	
The node �emptyIgn must be adjacent to one of the four nodes	 This also holds if
�emptyIgn is the new endmost child of nodePtr� and therefore has no sibling on one
side	 In this case� either �partialRight or �partialLeft contains a null pointer	 Thus
either

�partialRight �� �emptyIgn�getNextSib��emptyIgnSib


or

�partialLeft �� �emptyIgn�getNextSib��emptyIgnSib


holds� setting a correct ML�value at �emptyIgn	 The used strategy immediately allows to
check if the template matching was performed correctly	 If it was not performed correctly�
an error message is printed	

Consider now the �rst if query	 We check if �partialRightIgn exists	 If it does not exist�
and �emptyIgn is the endmost child of nodePtr� the if query
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�partialRightIgn �� �emptyIgn�getSib�LEFT


might return � and wrong ML�values would be considered	

If �partialRightIgn exists� it is checked if �partialRightIgn and �emptyIgn are adja�
cent	 This is done by examining the left and the right sibling of �emptyIgn	 If� e	g	�

�partialRightIgn �� �emptyIgn�getSib�LEFT


holds� we need to set the ML�value of �emptyIgn associated with the left sibling pointer
of �emptyIgn	

The ML�value that we assign to �emptyIgn depends on the pointer that �partialRightIgn
uses to dereference its sibling �emptyIgn	 If� e	g	� �partialRightIgn dereferences
�emptyIgn via its left sibling pointer� we use the corresponding left ML�value of
�partialRightIgn	

All other cases are handled analogous	

htemplate�Q�� Update ignored empty endmost childreni�
if ��partialRightIgn �� �partialRightIgn �� �emptyIgn�getSib�LEFT		




if ��partialRightIgn�getSib�LEFT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��leftML �

�partialRightIgn�getNodeInfo�	��userStructInfo��leftML�

else if ��partialRightIgn�getSib�RIGHT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��leftML �

�partialRightIgn�getNodeInfo�	��userStructInfo��rightML�

�

else if ��partialRightIgn �� �partialRightIgn �� �emptyIgn�getSib�RIGHT		




if ��partialRightIgn�getSib�LEFT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��rightML �

�partialRightIgn�getNodeInfo�	��userStructInfo��leftML�

else if ��partialRightIgn�getSib�RIGHT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��rightML �

�partialRightIgn�getNodeInfo�	��userStructInfo��rightML�

�

else if ��partialLeftIgn �� �partialLeftIgn �� �emptyIgn�getSib�LEFT		




if ��partialLeftIgn�getSib�LEFT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��leftML �

�partialLeftIgn�getNodeInfo�	��userStructInfo��leftML�

else if ��partialLeftIgn�getSib�RIGHT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��leftML �

�partialLeftIgn�getNodeInfo�	��userStructInfo��rightML�

�

else if ��partialLeftIgn �� �partialLeftIgn �� �emptyIgn�getSib�RIGHT		
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if ��partialLeftIgn�getSib�LEFT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��rightML �

�partialLeftIgn�getNodeInfo�	��userStructInfo��leftML�

else if ��partialLeftIgn�getSib�RIGHT	 �� �emptyIgn	

�emptyIgn�getNodeInfo�	��userStructInfo��rightML �

�partialLeftIgn�getNodeInfo�	��userStructInfo��rightML�

�

else if ��partialRight �� �emptyIgn�getNextSib��emptyIgnSib		




if ��partialRight �� �emptyIgn�getSib�RIGHT		

�emptyIgn�getNodeInfo�	��userStructInfo��rightML ��mlRight�

else if ��partialRight �� �emptyIgn�getSib�LEFT		

�emptyIgn�getNodeInfo�	��userStructInfo��leftML � �mlRight�

�

else if ��partialLeft �� �emptyIgn�getNextSib��emptyIgnSib		




if ��partialLeft �� �emptyIgn�getSib�RIGHT		

�emptyIgn�getNodeInfo�	��userStructInfo��rightML � �mlLeft�

else if ��partialLeft �� �emptyIgn�getSib�LEFT		

�emptyIgn�getNodeInfo�	��userStructInfo��leftML � �mlLeft�

�

else

cerr �� �ERROR �� LevelPQTree � template�Q�� �

�� �doubly linked list of ignored children messed up�� �� endl�
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Chapter 	

Discussion

The method for producing level drawings of a digraph G � �V�E� that was presented
by Sugiyama et al� ������ is highly intuitive and can be applied to any directed graph�
regardless of its graph theoretic properties	 Thus� the approach of Sugiyama et al� ������
�and subsequent methods of Gansner� North� and Vo ������� Eades and Sugiyama �������
Messinger� Rowe� and Henry ������� and Gansner� Koutso�os� North� and Vo ������ that
are closely related� is not restricted to the drawing of digraphs with a prede�ned leveling	
Besides� its implementation is rather easy if only heuristics are used for the various problems
that appear	 This makes the approach very attractive in practice and variations of it are
not only found in almost all graph drawing systems� but also in a lot of other systems that
need to visualize information	 The hierarchical approach consists of three steps	

�i� �a� If the graph G does not have a leveling� the vertices of G are assigned to levels	

�b� The level graph G is transformed into a proper level graph	

�ii� The vertices within each level are ordered to obtain a small the number of edge
crossings	

�iii� A horizontal coordinate is assigned to each vertex	

Transforming the level graph G into a proper graph is done since it is dicult to handle
crossings involving long edges	 However� the number of dummy vertices that are added
during the transformation is in O�n�� with n being the number of vertices in G	

By using the linear time level planarity test and the linear time level planar embedding
algorithm that have been presented in this work� a drawing of a level planar graph can be
produced in O�n� time without transforming the level graph into a proper one �rst	 Thus
the usual hierarchical approach as presented above is expanded by an extra step where we
check in O�n� if the graph is level planar� and if so� produce the corresponding drawing	 If
not� we apply the usual techniques for minimizing the number of crossings	

Clearly� level graphs that need to be visualized are not level planar in general	 Thus we
expect research to continue on concentrating on the subject of minimizing the number of


��
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edge crossings	 Since almost all approaches known in the literature only attack the problem
of 
�level crossing minimization� studies on more general approaches are desirable in order
to obtain a global view on the graph while reducing the number of edge crossings	

From our point of view� two main directions are worth to be investigated	 The �rst is to solve
the multi�level crossing minimization problem by branch�and�cut methods as suggested in
J�unger� Lee� Mutzel� and Odenthal �����a�	 This demands deeper polyhedral studies of
the associated polytope	 The second direction is to study an alternative method� the k�
level planarization problem� suggested by Mutzel ������	 This method removes a minimum
number of edges such that the resulting graph is k�level planar	 For the �nal diagram� the
removed edges are reinserted into a k�level planar drawing	 In order to apply the k�level
planarization method� the level planar embedding algorithm as it has been presented in
this work can be applied	 This makes our results also interesting for nonlevel planar graphs	

Mutzel ������ studies the k�level planarization problem for the case k � 
	 However� ex�
tracting a 
�level planar graph with maximum number of edges from a given 
�level graph
is NP�hard� as has been shown by Eades and Whitesides ������	 Based on a characteriza�
tion of 
�level planar graphs by Harary and Schwenk ����
��Tomii et al� ������� and Eades
et al� ������ �see �	��� Mutzel ������ gives an integer linear programming formulation for
the 
�level planarization problem and de�nes and investigates the polytope associated with
the set of all 
�level planar subgraphs of a 
�level graph	 The polytope has full dimension
and the inequalities occurring in the integer linear description are facet de�ning for the
polytope	 Moreover� Mutzel ������ showed that these inequalities can be separated in poly�
nomial time and therefore can be used eciently in a branch�and�cut method for solving
practical instances of the 
�level planarization problem	

In order to attack the k�level planarization problem for k 
 
� an integer linear program�
ming formulation has to be found� and the polytope associated with the set of all k�level
planar subgraphs of a k�level graph needs to be described	 Besides� polynomial time sepa�
ration algorithms need to be developed for practical application	 We build our hope that
this can be achieved on two facts� namely our algorithm for recognizing k�level planarity�
and the recent results of Healy and Kuusik ������ who give a characterization of level
planar graphs in terms of minimal forbidden subgraphs called minimal nonlevel planar
subgraph patterns �MNLP�patterns�	 Such a MNLP�pattern is de�ned to have the property
that the removal of any edge in the pattern makes the pattern level embeddable without
edge crossings	

One important task in the k�level planarization problem is the detection of MNLP�patterns
in nonlevel planar graphs	 Further investigations are desired in order to expand our level
planarity test such that it outputs a minimal nonlevel planar subgraph if the tested graph
is not level planar	 Karabeg ������ and Hundack et al� ������ have successfully installed
a method in the planarity test of Booth and Lueker ������ for detecting subdivisions of
K��� and K� in nonplanar graphs	 With respect to the approach of Karabeg� we hope that
similar methods can be found for nonlevel planar graphs	
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Detecting a MNLP�pattern is not only interesting for the k�level planarization problem	
Such methods can also be used to verify the result of the level planarity test	 The need
for the ability of veri�cation needs to be mentioned in context with the fact that planarity
tests are nontrivial programs and therefore it is not unlikely that an implementation is
faulty	 It is therefore desirable for a program to have the ability of self�checking	 For the
level planarity test that was presented in this work� two cases occur	 Either it outputs that
the level graph is planar	 Then the test should be able to compute an embedding and(or
a drawing	 This can be done using the level planar embedding algorithm presented in this
work	 Or the test should be able to exhibit a MNLP�pattern	

These considerations reveal that there is a large number of open problems closely related to
the topics of this work on level planarity	 Other topics deal with the layout of level graphs	
A lot of e�ort was spent on the second step of the hierarchical approach of Sugiyama et al�
������� trying to minimize the number of crossings	 However� the third phase that actually
produces the drawing of a graph has been underestimated in the past	 Problems come
along with long edges that usually tend to have a lot of bends	 The e�ect is that even if
the number of edge crossings is small� the drawings are almost never aesthetically pleasing	
The only work that deals with the third phase in full detail is by Gansner� Koutso�os�
North� and Vo ������	

A lot of problems arise when using the hierarchical approach for graphs that do not have
a leveling	 Here� vertices are assigned to certain levels	 Although this is done obeying
certain requirements �e	g	� the level graph should be compact� the leveling has to be proper�
and the number of dummy vertices that have to be introduced should be small�� this
phase is encapsulated and predetermines in some sense the �nal drawing of the graph	 The
number of crossings that appear in a level graph is highly dependent on the chosen leveling	
Therefore� it would be preferable to develop methods that try to combine the three phases
of the hierarchical approach	

We hope that the tools and results we have presented in this work will contribute to a
deeper understanding in the drawing of level graphs	
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Deutsche Zusammenfassung

Planarit�at ist eine Eigenschaft von Graphen� die viel beachtet und untersucht wird	 Sie
erlaubt es� gewisse Probleme� die sich bei allgemeinen Graphen als schwer erweisen� bei
planaren Graphen ezient zu l�osen	 Klassische Beispiele sind die Bestimmung der Chro�
matischen Zahl eines Graphen oder die Bestimmung von Multicomodity Fl�ussen	

Ein Graph G � �V�E� ist planar genau dann� wenn er sich ohne Kanten�uberkreuzungen in
der Ebene zeichnen l�a*t	 Auf dem Gebiet des automatischen Zeichnens von Graphen hat
daher die Planarit�at eine gro*e Bedeutung� da das wesentlichste Kriterium f�ur eine �asthe�
tisch ansprechende Darstellung eines Graphen eine m�oglichst geringe Zahl von Kreuzungen
oder� falls der Graph planar ist� eine kreuzungsfreie Darstellung ist	 F�ur das automatische
Zeichnen von Graphen ist daher� neben der �Uberpr�ufung eines Graphen auf Planarit�at mit�
tels eines Planarit�atstests� insbesondere auch die Bestimmung einer planaren Einbettung
mittels eines Einbettungsalgorithmus von Bedeutung	

Hier haben sich in j�ungerer Vergangenheit zwei Ans�atze erfolgreich durchsetzen k�onnen	
Der erste Ansatz basiert auf einer

�
Divide�and�Conquer� Strategie� bei der in einem auf

Planarit�at zu testenden Graphen G ein Kantenkreis C gesucht wird� dessen Entfernen den
Graphen in mindestens zwei Zusammenhangskomponenten zerlegt	 Anschlie*end werden
die Zusammenhangskomponenten von G 	 C rekursiv auf Planarit�at �uberpr�uft	 Ist jede
der Zusammenhangskomponenten von G 	 C planar� so wird anschlie*end versucht� die
Komponenten so um C zu gruppieren� da* der resultierende Graph planar ist	 Dieses Kon�
zept wurde von Hopcroft und Tarjan ������ erfolgreich in einen Planarit�atstest umgesetzt�
dessen Laufzeit linear in der Zahl der Ecken V eines Graphen ist	 Ein darauf basierender
Einbettungsalgorithmus mit ebenfalls linearer Laufzeit wurde von Mehlhorn und Mutzel
������ entwickelt	

Der zweite Ansatz basiert auf der Konstruktion einer Folge von induzierten Untergraphen	
Ausgehend von einem Untergraphen� der durch eine Ecke des Graphen induziert und somit
trivialerweise planar ist� werden sukzessive alle Ecken zu dem Untergraphen addiert und
bei jeder Addition �uberpr�uft� ob der daraus resultierende induzierte Untergraph planar
ist	 Mit Hilfe der PQ�Baum Datenstruktur konnte dieses Konzept von Booth und Lueker
������ erfolgreich in O�n� Zeit mit n � jV j realisiert werden	 Chiba� Nishizeki� Abe und
Ozawa ������ entwickelten einen auf diesem Ansatz basierenden Einbettungsalgorithmus
mit linearer Laufzeit	



�





� Deutsche Zusammenfassung

Neben dem �asthetischen Kriterium der kreuzungsfreien Zeichnung f�ur planare Graphen
gibt es eine Reihe weiterer Kriterien� die h�au�g nicht gleichzeitig zu realisieren sind	 So ist
es zum Beispiel w�unschenswert� bei der Darstellung gerichteter azyklischer Graphen alle
Kanten des Graphen monoton in eine Richtung verlaufen zu lassen	 Gerichtete azyklische
Graphen� die eine planare Zeichnung besitzen� in der alle Kanten monoton in eine Richtung
gezeichnet sind� werden als aufw�artsplanare Graphen bezeichnet	 Bei der Aufw�artsplana�
rit�at handelt es sich um eine Eigenschaft� die noch restriktiver ist als die der Planarit�at	
Gerichtete azyklische Graphen mit der Eigenschaft planar zu sein� sind in der Regel nicht
aufw�artsplanar	 �Uberdies handelt es sich bei der Aufw�artsplanarit�at um einNP�vollst�andi�
ges Problem� wie Garg und Tamassia ������ nachweisen konnten	 Lediglich f�ur den Fall�
da* der zu testende Graph genau nur eine Quelle �respektive eine Senke� besitzt� ist es
bislang m�oglich� einen Graphen auf Aufw�artsplanarit�at zu testen �siehe u	a	 Bertolazzi�
Di Battista� Mannino und Tamassia �������	

H�au�g anzutre�en ist der Wunsch nach geschichteten Zeichnungen oder hierarchischen
Darstellungen von gerichteten azyklischen Graphen	 Solche Darstellungstechniken haben
ihren Ursprung in der Netzplantechnik� in PERT�Diagrammen und bei der Darstellung
von Programmabl�aufen	 Vorgegeben wird dabei zus�atzlich zu dem Graph G eine Funktion
lev � V � Z� die jeder Ecke eine ganze Zahl so zuordnet� da* f�ur jede gerichtete Kante
�u� v� � E gilt� lev�v� 
 lev�u� � �	 Eine solche Funktion wird als die Schichtung eines
Graphen G bezeichnet	 Ein Graph mit einer Schichtung hei*t Schichtgraph	 Die Menge
der Knoten V j � lev���j� ist eine Schicht des Graphen	 Eine geschichtete Zeichnung eines
Schichtgraphen ist eine Zeichnung des Graphen in der Ebene� bei der die Ecken der Schicht j
auf der Geraden lj � f�x� k	j� j x � Rg plaziert werden und jede Kante �u� v� � E� u � V i�
v � V j� � � i � j � k� als monoton fallende Kurve gezeichnet wird	 Den Ecken des Graphen
werden also feste y�Koordinaten zugewiesen� lediglich die x�Koordinaten sind frei w�ahlbar	
Besitzt nun ein Schichtgraph eine geschichtete Zeichnung ohne Kanten�uberkreuzungen� so
ist der Graph schichtplanar	

Der �ubliche Ansatz um eine solche geschichtete Zeichnung zu erzeugen� ist ein Drei�Phasen�
Modell von Sugiyama� Tagawa und Toda ������	 In einer ersten Phase wird� sofern nicht
bereits durch die darzustellende Probleminstanz vorgegeben� eine Einteilung der Ecken in k
Schichten vorgenommen	 In der zweiten Phase wird versucht� die Zahl der Kanten�uberkreu�
zungen zu minimieren� um anschlie*end in der dritten Phase die Zeichnung zu erzeugen	

Bei der zweiten Phase wird versucht� das k�Schichten�Kreuzungsminimierungsproblem zu
l�osen	 Geht man davon aus� da* jeder Schichtgraph in einen Schichtgraphen transformiert
werden kann� in dem jede Kante nur zwei Ecken auf benachbarten Schichten verbindet� so
besteht das k�Schichten�Kreuzungsminimierungsproblem darin� f�ur die Knoten von jeder
Schicht geeignete Permutationen zu �nden� so da* die Zahl der entstehenden Kreuzungen
m�oglichst gering ist	 Allerdings konnten Garey und Johnson ������ nachweisen� da* es sich
hierbei schon f�ur k � 
 Schichten um ein NP�schweres Problem handelt	 Eades� McKay
und Wormald ������ wiesen nach� da* das 
�Schichten�Kreuzungsminimierungsproblem
selbst dann noch NP�schwer ist� wenn die Ecken auf einer der beiden Schichten in ihren
Positionen �xiert werden	
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Aufgrund der Schwere der Probleme wurde bislang lediglich versucht� durch lokale Kreu�
zungsminimierung die Zahl aller Kreuzungen zu verringern	 Dabei wird der Graph Schicht
f�ur Schicht durchlaufen und unter Verwendung einer

�
guten� Heuristik zur Minimierung

der Kreuzungen in 
�Schicht�Graphen versucht� die Zahl der Kreuzungen zwischen je zwei
benachbarten Schichten zu minimieren	 Die anf�anglichen Heuristiken in diesem Verfahren
sind inzwischen durch reifere Ans�atze wie dem

�
Branch�and�Cut� Verfahren von J�unger

und Mutzel ������ ersetzt worden� die f�ur den Fall� da* eine der beiden Schichten fest
gew�ahlt wird� vielfach nicht nur beweisbar gute� sondern auch optimale L�osungen bestim�
men	

Der Ansatz von Sugiyama� Tagawa und Toda ������ erfreut sich ungebrochener Beliebtheit�
was sich zum einen mit der f�ur praxisrelevante Probleme geeigneten Darstellung erkl�aren
l�a*t	 Zum anderen aber zeichnet sich dieser Ansatz vor allem durch eine f�ur Fachfremde
leichte Verst�andlichkeit aus und ist �uberdies mit Hilfe einer einfachen Kreuzungsminimie�
rungsheuristik leicht zu implementieren	 Allerdings k�onnen f�ur den Fall von drei und mehr
Schichten Zeichnungen der geschichteten Graphen erstellt werden� in denen die Zahl der
auftretenden Kreuzungen ein Vielfaches der minimal m�oglichen Zahl von Kreuzungen �uber�
steigt	 Dies ist nat�urlich bedingt durch die stark eingeschr�ankte lokale Sicht w�ahrend der
Kreuzungsminimierung zwischen zwei benachbarten Schichten	 Im schlimmsten Fall werden
so Graphen mit Kreuzungen gezeichnet� die sich tats�achlich kreuzungsfrei zeichnen lassen	
Ans�atze zur Minimierung der Zahl der Kreuzungen unter gleichzeitiger Ber�ucksichtigung
aller Schichten stecken noch in den Anf�angen �ein erster Ansatz dazu ist bei J�unger� Lee�
Mutzel und Odenthal ������ verzeichnet�	

Ein weiterer m�oglicher Ansatz� um �asthetisch ansprechende Zeichnungen zu erzeugen� wur�
de von Mutzel ������ aufgezeigt	 Statt das k�Schichten�Kreuzungsminimierungsproblem zu
betrachten� soll versucht werden das NP�schwere k�Schichten�Planarisierungsproblem mit
Hilfe von Branch�and�Bound Methoden zu l�osen	 Dabei mu* die minimale Zahl von Kanten
bestimmt werden� deren Entfernen den Graphen �unter Ber�ucksichtigung der Schichtung�
planarisiert	 Anschlie*end wird eine kreuzungsfreie Zeichnung des Graphen bestimmt und
die entfernten Kanten werden so in die Zeichnung eingef�ugt� da* die Zahl der dadurch
entstehenden Kreuzungen klein bleibt	 Um diese Verfahren anwenden zu k�onnen� mu* al�
lerdings ein Einbettungsalgorithmus existieren� der f�ur einen geschichteten Graphen eine
planare Einbettung bestimmt� die die Schichtung des Graphen ber�ucksichtigt	

Hier setzt die vorliegende Arbeit an	 Zum einen ist es w�unschenswert� einen geschich�
teten Graphen� der sich kreuzungsfrei zeichnen l�a*t� der somit schichtplanar ist� als
solchen zu erkennen und eine entsprechende Einbettung zu bestimmen	 Zum ande�
ren er�o�net ein Einbettungsalgorithmus f�ur schichtplanare Graphen �uber eine Verwen�
dung im k�Schichten�Planarisierungsproblem eine sinnvolle Alternative zum k�Schichten�
Kreuzungsminimierungsproblem	

Einen ersten Schichtplanarit�atstest entwickelten Di Battista und Nardelli ������ f�ur die
eingeschr�ankte Klasse der Hierarchien	 Eine Hierarchie ist ein Schichtgraph mit genau ei�
ner Quelle	 Beginnend mit der ersten Schicht �uberpr�uft der Algorithmus sukzessive� ob
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der durch die ersten j Schichten induzierte Untergraph Gj schichtplanar ist	 Dieses Vorge�
hen kann unter Verwendung der Datenstruktur PQ�Baum so implementiert werden� da*
ein Test in O�n� Zeit durchf�uhrbar ist	 Di Battista und Nardelli ������ gaben ferner eine
Modi�kation ihres Algorithmus an� die zus�atzlich die Bestimmung einer schichtplanaren
Einbettung erlaubt	 Der Ansatz kann allerdings nicht bei generellen Schichtgraphen appli�
ziert werden� da Gj im allgemeinen nicht zusammenh�angend ist	

Eine Erweiterung dieses Schichtplanarit�atstestes wurde von Heath und Pemmaraju ������
pr�asentiert	 Diese Erweiterung sollte es erlauben� auch allgemeine Schichtgraphen auf
Schichtplanarit�at zu testen	 Dabei wird f�ur jede Komponente F von Gj ein PQ�Baum
eingef�uhrt� der die Menge der schichtplanaren Einbettungen von F repr�asentiert	 Sind
zwei Komponenten F� und F� von Gj inzident zu derselben Ecke in Schicht j � �� m�ussen
die zu F� und F� korrespondierenden PQ�B�aume T� und T� zu einem neuen PQ�Baum
kombiniert werden	

In dem erweiterten Schichtplanarit�atstest konnten wir allerdings tiefgreifende De�zite fest�
stellen� die dazu f�uhren� da* sich schichtplanare Graphen durch den Algorithmus nicht als
solche identi�zieren lassen	 Ferner behaupten Heath und Pemmaraju ������� da* der von
ihnen pr�asentierte Ansatz nur O�n� Zeit ben�otigt	 Dies ist allerdings nicht nachvollziehbar�
da gewisse Aspekte �z	B	 Update�Operationen� nicht analysiert werden und f�ur den darge�
stellten Algorithmus nur eine Laufzeit von O�n logn� erreichbar ist	 G�anzlich unbearbeitet
lie*en Heath und Pemmaraju ������ einen Einbettungsalgorithmus f�ur schichtplanare Gra�
phen	

In dieser Arbeit analysieren wir die in dem Schichtplanarit�atstest von Heath und Pem�
maraju ������ auftretenden De�zite	 Durch die Entwicklung neuer Methoden k�onnen wir
die auftretenden De�zite umgehen und einen O�n logn� Schichtplanarit�atstest entwickeln	
Durch eine konzeptionelle �Anderung im Ablauf des Algorithmus sowie der Verwendung
weiterer neuer Methoden ist es au*erdem gelungen� einen Schichtplanarit�atstest mit O�n�
Laufzeit zu entwickeln	

Des weiteren wurde ein Einbettungsalgorithmus f�ur schichtplanare Graphen mit linearer
Laufzeit entwickelt	 Dem Einbettungsalgorithmus liegt� basierend auf dem Schichtplana�
rit�atstest� ein aus drei Phasen bestehendes Konzept zugrunde	 In den ersten beiden Phasen
wird unter Ber�ucksichtigung der Schichtplanarit�at durch Einf�ugen von zus�atzlichen Kan�
ten ein planarer st�Graph erzeugt	 Eine beliebige topologische Ordnung der Ecken dieses
st�Graphen induziert eine st�Numerierung und basierend auf dieser Numerierung wird eine
herk�ommliche planare Einbettung mit Hilfe des Algorithmus von Chiba� Nishizeki� Abe
und Ozawa ������ erzeugt	 Diese herk�ommliche planare Einbettung l�a*t sich dann auf eine
schichtplanare Einbettung zur�uckf�uhren	

Im folgenden geben wir eine �Ubersicht �uber die einzelnen Kapitel der Arbeit	 Nach einer
Einf�uhrung im ersten Kapitel werden im zweiten Kapitel die f�ur die Arbeit grundlegenden
graphentheoretischen Begri�e eingef�uhrt	

Im dritten Kapitel wird die f�ur den Schichtplanarit�atstest und Einbettungsalgorithmus sehr
wichtige Datenstruktur der PQ�B�aume eingef�uhrt	 Mit Hilfe der von Booth und Lueker
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������ entwickelten PQ�B�aume kann man f�ur eine endliche Menge U genau die Permuta�
tionen �uber U darstellen� in denen f�ur n Teilmengen Si � U � i � �� 
� � � � � n� alle Elemente
von Si eine zusammenh�angende Teilfolge bilden	 F�ur jede Probleminstanz bestehend aus
einer Menge U und Teilmengen Si� i � �� 
� � � � � n� kann ein solcher PQ�Baum in linea�
rer Zeit bestimmt werden	 Eine solche Konstruktion wird als Reduktion der Mengen Si
bezeichnet	 Des weiteren wird im dritten Kapitel der auf den PQ�B�aumen basierende
Planarit�atstest f�ur herk�ommliche Graphen vorgestellt� um die grundlegende Strategie der

�
Ecken�Addition� des in dieser Arbeit vorgestellten Planarit�atstests darzulegen	 Der auf
diesem Planarit�atstest f�ur herk�ommliche Graphen basierende Einbettungsalgorithmus von
Chiba� Nishizeki� Abe und Ozawa ������ wird im Hinblick auf seine Verwendung in der
dritten Phase des Einbettungsalgorithmus f�ur schichtplanare Graphen ebenfalls vorgestellt	
Da sich in j�ungerer Zeit gezeigt hat� da* die Applikation der PQ�Baum Datenstruktur nicht
immer unproblematisch ist� werden noch zwei weitere Algorithmen vorgestellt� die eben�
falls PQ�B�aume verwenden	 Dabei handelt es sich zum einen um einen c�Planarit�atstest
f�ur Clustergraphen von Feng� Cohen und Eades ������ als eine gelungene Adaption der Da�
tenstruktur	 Zum anderen handelt es sich um einen Ansatz von Jayakumar� Thulasiraman
und Swamy ������ und Kant ����
� zur Bestimmung eines maximal planaren Untergra�
phen in einem nicht planaren Graphen� bei dem wir in dieser Arbeit ein grunds�atzliches
De�zit nachweisen k�onnen� das nahelegt� zur L�osung dieses Problems keine PQ�B�aume zu
verwenden	

Im vierten Kapitel wird ein Schichtplanarit�atstest f�ur allgemeine Schichtgraphen ent�
wickelt	 Dazu wird zun�achst die von Di Battista und Nardelli ������ gefundene Beschrei�
bung der Schichtplanarit�at von Hierarchien mittels verbotener Untergraphen eingef�uhrt�
von der Healy und Kuusik ������ nachweisen konnten� da* diese Beschreibung ebenfalls eine
Beschreibung der Schichtplanarit�at f�ur allgemeine� geschichtete Graphen ist	 Der Schicht�
planarit�atstest f�ur Hierarchien verwaltet im wesentlichen einen PQ�Baum	 Mit Hilfe dieses
PQ�Baumes lassen sich f�ur einen durch die ersten j Schichten induzierten Untergraphen Gj

alle Permutationen der Ecken auf der Schicht j� die in einer beliebigen schichtplanaren Ein�
bettung existieren� darstellen	 Im �Ubergang vom PQ�Baum f�ur Gj zum PQ�Baum f�ur Gj��

wird die von Booth und Lueker ������ entwickelte Reduktion auf Mengen von eingehenden
Kanten� die zu derselben Ecke in V j�� inzident sind� angewandt	 Im Ansatz von Heath und
Pemmaraju ������ wird f�ur jede Komponente von Gj ein solcher PQ�Baum verwaltet	 Falls
Komponenten zu derselben Ecke in V j�� inzident sind� so werden die korrespondierenden
PQ�B�aume zu einem neuen PQ�Baum zusammengefa*t	 Im folgenden wird dies als

�
Mer�

ge��Operation bezeichnet	 Wir stellen in diesem Ansatz zwei grundlegende De�zite fest	
Zum einen werden

�
singul�are� Komponenten von Gj� das sind Komponenten� die genau

nur zu einer Ecke aus V j�� inzident sind� nicht korrekt bearbeitet	 Des weiteren fassen
Heath und Pemmaraju ������ PQ�B�aume in beliebiger Reihenfolge zusammen	 Dadurch
entstehen PQ�B�aume� die nicht alle schichtplanaren Einbettungen der korrespondieren�
den Komponenten darstellen	 Durch diese De�zite werden schichtplanare Graphen nicht
als solche identi�ziert	 Die Behebung der De�zite gelingt uns durch die Verwendung zwei�
er neuer Konzepte	 Durch die Speicherung und Verwaltung gewisser Informationen �uber
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innere L�ander sowie Gebiete des �au*eren Landes in m�oglichen schichtplanaren Einbettun�
gen k�onnen wir eine korrekte Behandlung singul�arer Komponenten garantieren	 Ferner ist
es gelungen zu beweisen� da* bei einer Sortierung der PQ�B�aume nach Gr�o*e und an�
schlie*ender Zusammenfassung der PQ�B�aume gem�a* dieser Gr�o*e� die so erzeugten PQ�
B�aume tats�achlich alle schichtplanaren Einbettungen ihrer Komponenten repr�asentieren	
In Kombination mit den Merge�Operationen von Heath und Pemmaraju ������ ergibt sich
dadurch ein O�n logn��Schichtplanarit�atstest	 Notwendige Update�Operationen in diesem
O�n logn��Ansatz k�onnen wir durch eine Ver�anderung im Ablauf des Algorithmus sowie
weiteren konzeptionellen Neuerungen vermeiden	 Dadurch verbessern wir die Laufzeit des
Planarit�atstests auf O�n� Zeit	

Die Entwicklung eines O�n��Einbettungsalgorithmus f�ur schichtplanare Graphen wird im
f�unften Kapitel behandelt	 Dem Algorithmus liegt ein Drei�Phasen�Modell zugrunde	 Nach
Hinzuf�ugen einer weiteren Quelle s auf einer zus�atzlichen Schicht oberhalb eines schicht�
planaren Graphen G � �V�E� mit k�Schichten und einer weiteren Senke t auf einer zus�atz�
lichen Schicht unterhalb von G wird in einer ersten Phase der Graph G zu einer Hierarchie
augmentiert	 Dabei wird zu jeder Senke aus V eine ausgehende Kante addiert� so da*
die Schichtplanarit�at des Graphen nicht verletzt wird	 Die zweite Phase addiert zu jeder
Quelle aus V eine eingehende Kante� ohne die Schichtplanarit�at zu verletzen	 Nach der Ad�
dition einer weiteren Kante �s� t� handelt es sich bei dem so erzeugten Graphen um einen
planaren st�Graphen� bei dem die topologische Ordnung der Ecken eine st�Numerierung in�
duziert	 Unter Verwendung dieser st�Numerierung wird in einer dritten Phase mittels des
Einbettungsalgorithmus f�ur herk�ommliche Graphen eine planare Einbettung bestimmt�
die sich anschlie*end auf eine schichtplanare Einbettung des urspr�unglichen Graphen G
zur�uckf�uhren l�a*t	 Der f�ur die zweite Phase zu verwendende Algorithmus ist� unter Um�
kehrung der Kantenrichtung in dem Graphen� mit dem Algorithmus der ersten Phase iden�
tisch	 Die Augmentation in der ersten Phase basiert auf dem O�n��Schichtplanarit�atstest	
Um eine ausgehende Kante inzident an eine Senke einzuf�ugen� wird f�ur jede Senke v � V j�
� � j � k� in dem PQ�Baum T � in dem das zur Senke v korrespondierende Blatt letzt�
malig auftritt� ein

�
Senkenindikator� si�v� eingef�ugt	 Dieser Senkenindikator si�v� ist ein

Blatt in T � das in allen PQ�Baum Operationen zu ignorieren ist	 Dadurch wird die Klas�
se der Permutationen des PQ�Baumes T nicht ver�andert	 Wir �nden Bedingungen� un�
ter denen si�v� als ein Blatt korrespondierend zu einer neuen Kante �v� w�� mit w � V l�
j � l � k � �� interpretiert werden kann� bei denen die Addition dieser Kante die Schicht�
planarit�at nicht verletzt	 Dabei m�ussen wir unterscheiden zwischen Bedingungen� die bei
Operationen innerhalb eines PQ�Baumes zur Anwendung kommen und Bedingungen� die
bei Merge�Operationen eingesetzt werden m�ussen	 Bei Operationen innerhalb eines PQ�
Baumes ist die Verwaltung der Senkenindikatoren unproblematisch	 Anders jedoch stellt
sich die Situation bei Merge�Operationen dar	 Hier treten bei der Wahl von Senkenindi�
katoren f�ur eine Kantenaugmentierung gewisse Freiheiten auf� die zu dem Zeitpunkt der
Merge�Operation nicht entschieden werden k�onnen	 Die Entscheidung �uber die Wahl der
Senkenindikatoren kann mit Hilfe von

�
Kontakten� auf einen Zeitpunkt verschoben wer�

den� bei der w�ahrend der Bearbeitung einer sp�ateren Schicht die m�oglichen schichtplanaren
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Einbettungen so verringert werden� da* zul�assige Aussagen �uber die korrekte Wahl getrof�
fen werden k�onnen	 Mit Hilfe der Kontakte� bei denen es sich ebenfalls um Bl�atter im
PQ�Baum handelt� die in allen Operationen zu ignorieren sind� konnten wir ein System
entwickeln� das in O�n� Zeit einen schichtplanaren Graphen zu einer schichtplanaren Hier�
archie augmentiert	 Da die Zahl der so zus�atzlich eingef�ugten Kanten beschr�ankt durch die
Zahl der Ecken des Graphen ist� ergibt sich sowohl f�ur die Augmentierung zum st�Graphen�
als auch die anschlie*ende planare Einbettung und somit f�ur die schichtplanare Einbettung
eine lineare Laufzeit	

Das sechste Kapitel gibt einen �Uberblick �uber unsere Implementierung eines Einbettungs�
algorithmus f�ur schichtplanare Graphen	 Die objektorientierte Implementierung erfolgte
in C��� wobei die Datenstruktur PQ�Baum als Klassentemplate in die Implementierung
eingef�ugt wurde	 Da die Implementierung selbst sehr umfangreich ist� konzentriert sich das
Kapitel � nach einer Einf�uhrung in das verwendete Klassenkonzept auf die Darstellung
dreier Prozeduren	 Diese wurden so gew�ahlt� da* sie eine sinnvolle und erg�anzende Dar�
stellung zu den im vierten und f�unften Kapitel vorgestellten Operationen bilden� �uberdies
viele Spezialf�alle abdecken und somit einen Einblick in die Details der Implementierung
erm�oglichen	

Wir beschlie*en die Arbeit im siebten Kapitel mit einer Beschreibung der erreichten Re�
sultate sowie mit einer Diskussion �uber die M�oglichkeiten und Aufgaben kommender For�
schung	 Diese schlie*en insbesondere die praktische Verwendung des Einbettungsalgorith�
mus im k�Schichten�Planarisierungsverfahren ein	 Eine weitere Aufgabe ist die Entwicklung
von Pr�adikaten f�ur nicht schichtplanare Graphen	 Entsprechende Verfahren geben Benut�
zern eines Planarit�atstests Sicherheit �uber das Resultat eines Tests	
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